Big Jump Principle in Physical Models and Data Sets: From Levy Walk to Porous Media
物理模型和数据集中的大跳跃原理:从 Levy Walk 到多孔介质
基本信息
- 批准号:436344834
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project studies the big jump principle in physical systems and how it can be used to deal with extreme events, in particular the project studies damage reduction in contamination spreading. Under simplified assumptions the principle is a well-known concept in extreme value theory which is part of applied mathematics. It relates the sum and the maximum of a set of independent and identically distributed random variables which are fat-tailed. The principle states that when the sum becomes large it is proportional to the maximum. Thus, a single random variable, the "big jump", controls the statistics of the sum. Depending on the system the random variables add up to sums which represent different physical quantities, e.g. in random walks the step sizes add up to the particle position. However, in most physical systems the random variables are correlated and therefore the just described big jump principle is not valid. The project consists of two connected steps. First, extreme value theory is advanced for correlated systems. This provides necessary tools to describe the big jump principle in different physical models such as the ballistic Levy walk. Secondly, the big jump principle in the context of contamination spreading in porous media is studied in collaboration with the experimental hydrology group of Prof. Brian Berkowitz of the Weizmann Institute of Science. Within this collaboration the project further focuses on how the big jump principle helps to improve risk management in contamination spreading. The big jump principle here means that the maximum trapping time of the contamination particles in some hot spot like a dead-end pore leads to extended breakthrough times at some boundary like the groundwater level. The project investigates a promising idea for damage reduction: the removal of the big jump. This can either be realized by cutting out a critical dead-end pore in the porous medium or by subtraction of the maximum in a set of random variables for a theoretical model. The statistical properties of the extreme events of long periods of contamination change dramatically upon removal of the big jump. The contaminant is washed out much quicker and the environmental health is restored. An additional objective is the development of data analysis tools which are later applied on data sets such as precipitation. Here the project is in collaboration with the time series analysis group of Prof. Holger Kantz of the Max Planck Institute for the Physics of Complex Systems.
该项目研究物理系统中的大跳跃原理以及如何利用它来应对极端事件,特别是该项目研究减少污染传播中的损害。在简化假设下,该原理是极值理论中的一个众所周知的概念,它是应用数学的一部分。它涉及一组独立且同分布的厚尾随机变量的总和和最大值。该原理指出,当总和变大时,它与最大值成正比。因此,单个随机变量“大跳跃”控制着总和的统计数据。根据系统的不同,随机变量加起来代表不同的物理量,例如在随机游走中,步长加起来就是粒子位置。然而,在大多数物理系统中,随机变量是相关的,因此刚才描述的大跳跃原理是无效的。该项目由两个相互关联的步骤组成。首先,针对相关系统提出了极值理论。这为描述不同物理模型(例如弹道利维行走)中的大跳跃原理提供了必要的工具。其次,与魏茨曼科学研究所的Brian Berkowitz教授的实验水文学小组合作,研究了多孔介质中污染物扩散的大跳跃原理。在这次合作中,该项目进一步关注大跳跃原则如何帮助改善污染传播的风险管理。这里的大跳跃原理意味着污染颗粒在某些热点(如死胡同)中的最大捕获时间导致在某些边界(如地下水位)处的突破时间延长。该项目研究了一个有前途的减少损害的想法:消除大跳跃。这可以通过切除多孔介质中的关键死端孔或减去理论模型的一组随机变量中的最大值来实现。消除大跳跃后,长期污染的极端事件的统计特性会发生巨大变化。污染物被更快地冲走,环境健康得以恢复。另一个目标是开发数据分析工具,随后将其应用于降水等数据集。该项目是与马克斯·普朗克复杂系统物理研究所的 Holger Kantz 教授的时间序列分析小组合作的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Big jump principle for heavy-tailed random walks with correlated increments
具有相关增量的重尾随机游走的大跳跃原理
- DOI:10.1140/epjb/s10051-021-00215-7
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:M. Höll;E. Barkai
- 通讯作者:E. Barkai
Extreme value theory for constrained physical systems.
- DOI:10.1103/physreve.102.042141
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Marc Höll;Wanli Wang;E. Barkai
- 通讯作者:Marc Höll;Wanli Wang;E. Barkai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Marc Höll其他文献
Dr. Marc Höll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
光滑拟射影复代数簇的 jump loci 与 L^2 类不变量
- 批准号:12001511
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Fe-Ga(Al)磁致伸缩“jump”效应能量转换问题
- 批准号:51371028
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship Award
How do kangaroo herpesviruses jump to new host species?
袋鼠疱疹病毒如何转移到新的宿主物种?
- 批准号:
DP230102121 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Increasing access to chemistry for high schoolers with blindness: a program to jump start Central Texas
增加失明高中生接触化学的机会:一项启动德克萨斯州中部的计划
- 批准号:
10600066 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152655 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2152679 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Bio-Robots: Crawl, Jump, and Slither!
仿生机器人:爬行、跳跃和滑行!
- 批准号:
EP/W033755/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
A Quantum Jump Sensor for Dark Matter Detection
用于暗物质检测的量子跃迁传感器
- 批准号:
ST/W006650/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant