Prediction of protein functional sites by multivariate analysis of amino acid sequences

通过氨基酸序列的多变量分析预测蛋白质功能位点

基本信息

  • 批准号:
    63480514
  • 负责人:
  • 金额:
    $ 3.84万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1988
  • 资助国家:
    日本
  • 起止时间:
    1988 至 1989
  • 项目状态:
    已结题

项目摘要

In order to predict functional sites of proteins from their amino acid sequences, we have developed multivariate analysis and other methods and constructed databases for prediction. The starting point of our multivariate analysis method is to represent the amino acid sequence by a series of numerical values reflecting various biophysicochemical aspects of amino acid residues. For this purpose, we organized a database of amino acid indices by collecting published data for hydrophobicity and other properties. Since many of the reported indices were highly correlated, we performed a cluster analysis for grouping. Then, using discriminant analysis, we designed procedures to select important variables characterizing functional sites from a set of numerous variables defined from amino acid sequence data. The procedures were applied to the prediction of protein secondary structure segments and also to the prediction of glycosylation and phosphorylation sites. For the prediction of antigenicity determining sites, we organized a database with cross references of published peptide fragments and corresponding entries of the NBRF protein sequence database. However, our variable selection procedure did not produce satisfactory prediction. Because it was a severe limitation to represent sequence characteristics only by variables for multivariate analysis, we investigated more flexible methods. Thus, we applied an artificial intelligence method and developed an expert system. An expert system is more advantageous because it can incorporate various observations including results from multivariate analysis methods. We investigated the problem of predicting protein translocation sites in cells with this expert system approach. In summary, the multivariate analysis methods developed here are useful tools by themselves, but they can be more effective when combined with other approaches. Expert systems seem most suitable for practical applications.
为了从氨基酸序列中预测蛋白质的功能位点,我们开发了多变量分析等方法,并建立了预测数据库。我们的多元分析方法的出发点是用一系列反映氨基酸残基的各种生物物理化学方面的数值来表示氨基酸序列。为此,我们通过收集已发表的疏水性和其他性质的数据,建立了氨基酸指数数据库。由于许多报告的指数是高度相关的,我们进行了聚类分析进行分组。然后,使用判别分析,我们设计了程序,从氨基酸序列数据定义的一组众多变量中选择表征功能位点的重要变量。该程序应用于蛋白质二级结构段的预测,也用于糖基化和磷酸化位点的预测。为了预测抗原性决定位点,我们组织了一个数据库,交叉参考已发表的肽片段和NBRF蛋白序列数据库的相应条目。然而,我们的变量选择程序并没有产生令人满意的预测。由于在多变量分析中仅用变量表示序列特征存在严重的局限性,我们研究了更灵活的方法。因此,我们应用人工智能方法,开发了一个专家系统。专家系统更有优势,因为它可以结合各种观察结果,包括多变量分析方法的结果。我们研究了用这种专家系统方法预测细胞中蛋白质易位位点的问题。总之,这里开发的多变量分析方法本身是有用的工具,但当与其他方法结合使用时,它们可以更有效。专家系统似乎最适合实际应用。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seto,Y.and Kanehisa,M.: "Repeat sequences of amino acids suggest the origin of protein Bull." Inst.Chem.Res.Kyoto Univ.66. 461-468 (1989)
Seto,Y. 和 Kanehisa,M.:“氨基酸的重复序列表明 Bull 蛋白的起源。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakata,K.,Kanehisa,M.,and Maizel,J.V.,Jr.: "Discriminant analysis of promoter regions in E.coli sequences." Comp.Appl.Biosci.4. 367-371 (1988)
Nakata,K.、Kanehisa,M. 和 Maizel,J.V.,Jr.:“大肠杆菌序列中启动子区域的判别分析。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanehisa,M.: "A multivariate analysis method for discriminating protein secondary structural segments." Prot.Eng.2. 87-92 (1988)
Kanehisa,M.:“一种用于区分蛋白质二级结构片段的多变量分析方法。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kanehisa, M.: "A multivariate analysis method for discriminating protein secondary structural segments." Prot. Eng. 2, 87-92, 1988.
Kanehisa, M.:“一种用于区分蛋白质二级结构片段的多变量分析方法。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nakai,K.,Kidera,A.,and Kanehisa,M.: "Cluster analysis of amino acid indices for prediction of protein structure and function." Prot.Eng.2. 93-100 (1988)
Nakai,K.、Kidera,A. 和 Kanehisa,M.:“用于预测蛋白质结构和功能的氨基酸指数聚类分析。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANEHISA Minoru其他文献

KANEHISA Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KANEHISA Minoru', 18)}}的其他基金

Backbone Database for Understanding the Biological Systems
用于了解生物系统的骨干数据库
  • 批准号:
    17020005
  • 财政年份:
    2005
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Integrated Database of Microbial Genomes and Cellular Functions
微生物基因组和细胞功能综合数据库
  • 批准号:
    15013227
  • 财政年份:
    2003
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Biological Knowledge Based on Genome Information
基于基因组信息的生物知识
  • 批准号:
    08283103
  • 财政年份:
    1996
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (A)
Large-scale knowledge information processing in genome analysis
基因组分析中的大规模知识信息处理
  • 批准号:
    04261102
  • 财政年份:
    1991
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
  • 批准号:
    RGPIN-2016-05880
  • 财政年份:
    2022
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
  • 批准号:
    RGPIN-2016-05880
  • 财政年份:
    2021
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Discovery Grants Program - Individual
Multivariate analysis of microbial absolute abundance in population-based studies
基于人群的研究中微生物绝对丰度的多变量分析
  • 批准号:
    10226477
  • 财政年份:
    2020
  • 资助金额:
    $ 3.84万
  • 项目类别:
Multivariate Analysis for Samples of Networks
网络样本的多变量分析
  • 批准号:
    1916222
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Standard Grant
Mechanism of recovery in the gut microbiome: Multivariate analysis of the effects of antibiotic disturbance and probiotics
肠道微生物群的恢复机制:抗生素干扰和益生菌影响的多变量分析
  • 批准号:
    19J14598
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Multivariate analysis of angle-resolved polarized Raman spectroscopy - inhomogeneity in relaxor ferroelectrics
角分辨偏振拉曼光谱的多变量分析 - 弛豫铁电体的不均匀性
  • 批准号:
    19K05252
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of the effect of keratinized mucosa on peri-implant tissue health using a multivariate analysis
使用多变量分析评估角化粘膜对种植体周围组织健康的影响
  • 批准号:
    19K19051
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
  • 批准号:
    RGPIN-2016-05880
  • 财政年份:
    2019
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
  • 批准号:
    RGPIN-2016-05880
  • 财政年份:
    2018
  • 资助金额:
    $ 3.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了