Adversarial Design Framework for Self-Driving Networks (ADVISE)
自动驾驶网络的对抗性设计框架(ADVISE)
基本信息
- 批准号:438892507
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The networking community is currently engaged in designing more automated and ``self-driving'' communication networks that overcome today's manually managed networks. These networks exploit the flexibilities introduced by emerging software-defined and virtualized communication technologies, to implement more demand-aware networks which meet the stringent requirements of new applications arising, e.g., in the context of 5G applications, such as low-latency tele-operation or high-bandwidth machine-to-machine type communication.This project proposes a network design framework relying on new methodologies to realize the vision of such self-driving networks, by combining adapted machine learning and artificial intelligence with approaches providing formal correctness and performance guarantees. We consider the lack of rigorous guarantees by existing algorithms based on artificial intelligence as one of the key issues which can prevent the adoption of self-driving networks: communication networks have become a critical infrastructure of our digital society and hence need to provide dependability and deterministic performance guarantees. In particular, we consider adversarial and game-theoretic approaches to test and optimize networks, to leverage the performance benefits from machine learning approaches while at the same time provide rigorous worst-case guarantees.The PIs are well-prepared for this project, through the unique combination of expertise in machine learning and network algorithms, as also demonstrated in their recent joint publications leading to this project.
网络界目前正在设计更自动化和"自动驾驶“的通信网络,以克服当今人工管理的网络。这些网络利用了新兴的软件定义和虚拟化通信技术所引入的灵活性,以实现更多的需求感知网络,这些网络满足新应用的严格要求,例如,该项目提出了一个网络设计框架,该框架依赖于新的方法,通过将自适应机器学习和人工智能与提供形式正确性和性能保证的方法相结合,来实现这种自动驾驶网络的愿景。我们认为,现有的基于人工智能的算法缺乏严格的保证是阻碍自动驾驶网络采用的关键问题之一:通信网络已成为我们数字社会的关键基础设施,因此需要提供可靠性和确定性的性能保证。特别是,我们考虑了对抗和博弈论方法来测试和优化网络,以利用机器学习方法的性能优势,同时提供严格的最坏情况保证。PI通过机器学习和网络算法专业知识的独特组合,为这个项目做好了充分的准备,这也体现在他们最近的联合出版物中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Wolfgang Kellerer, since 4/2022其他文献
Professor Dr.-Ing. Wolfgang Kellerer, since 4/2022的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
DESIGN: Reforming organizational culture across Biology using a Community of Care framework
设计:使用护理社区框架改革跨生物学的组织文化
- 批准号:
2334832 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
- 批准号:
2338158 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: EAGER: AI-Assisted Just-in-Time Scaffolding Framework for Exploring Modern Computer Design
合作研究:EAGER:用于探索现代计算机设计的人工智能辅助即时脚手架框架
- 批准号:
2327971 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Universal Design Automation Framework for Analog Integrated Systems
职业:模拟集成系统的通用设计自动化框架
- 批准号:
2239033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
- 批准号:
2239458 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
DASS: A Multi-level Collaborative Design Framework for Cross-sovereignty Software Accountability
DASS:跨主权软件责任的多层次协作设计框架
- 批准号:
2317086 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Design features that prevent costly errors in cheater detection: hypothesis testing from the partner choice framework
防止作弊者检测中出现代价高昂错误的设计功能:合作伙伴选择框架的假设检验
- 批准号:
23K12863 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists