Resampling-based inference for causal effect estimates in time-to-event data
基于重采样的事件时间数据因果效应估计推断
基本信息
- 批准号:439942859
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Drawing causal conclusions from data becomes more and more relevant, not only in the context of growing data bases and therefore increasing use of observational data, but also in randomized controlled trials, where analyses often need to be adjusted for (despite randomization) unbalanced covariates or time-varying exposures arising from, e.g., a lack of adherence. The situation is even more complex, when the outcome is time-to-event, possibly subject to competing risks. During the first phase of the project, we rigorously investigated different resampling schemes for the estimation of confidence intervals and confidence bands of the average treatment effect in a setting with competing risks and right-censored data. It is the aim of this renewal proposal to extend the results in several directions: First, the issue of left-truncation has so far received little attention in causal inference literature. It is, however, relevant in several scenarios, reaching from pregnancy studies to time scales such as age or calendar time. Second, a common approach in causal inference is matching, e.g. based on propensity scores. Since this results in dependent data, the nonparametric bootstrap is no longer valid, but wild bootstrap approaches might still work, as has been shown in settings with a continuous or binary outcome, but not in the context of survival data, before. Third, a more complicated situation arises, when time-dependent confounding is present. We also aim to develop methods for this context, investigating landmark approaches and extending previous work on exposure density sampling and nested exposure case-control sampling. All methods will be available to a broad scientific audience by providing R code. This also increases both transparency and replicability of published simulation results. Moreover, simulated data shall be supplemented with empirical studies based on real data to increase the explanatory power of the results.
从数据中得出因果结论变得越来越重要,不仅在数据库不断扩大的背景下,因此也越来越多地使用观测数据,而且在随机对照试验中也是如此,在随机对照试验中,分析经常需要针对(尽管随机化)协变量不平衡或因缺乏遵循而产生的时变暴露进行调整。情况甚至更加复杂,当结果是事件发生的时间,可能会受到相互竞争的风险的影响。在项目的第一阶段,我们严格研究了不同的重抽样方案,以估计在竞争风险和右删失数据的情况下平均治疗效果的可信区间和可信区间。这个更新建议的目的是在几个方向上扩展结果:第一,到目前为止,在因果推理文献中,左截断问题几乎没有受到关注。然而,它在几个场景中都是相关的,从怀孕研究到年龄或日历时间等时间尺度。第二,因果推理中的一种常见方法是匹配,例如基于倾向分数。由于这会导致相依数据,因此非参数自举方法不再有效,但野生自举方法可能仍然有效,如之前在具有连续或二元结果的设置中所示,但不是在生存数据的情况下。第三,当存在依赖时间的混淆时,会出现更复杂的情况。我们还致力于为这一背景开发方法,调查具有里程碑意义的方法,并扩展先前在暴露密度抽样和嵌套暴露病例对照抽样方面的工作。通过提供R代码,所有方法都将提供给广泛的科学受众。这还增加了已发布的模拟结果的透明度和可复制性。此外,模拟数据应辅以以真实数据为基础的实证研究,以增加结果的解释力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jan Beyersmann其他文献
Professor Dr. Jan Beyersmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jan Beyersmann', 18)}}的其他基金
Drug induced adverse pregnancy outcomes: innovative event history analysis for non-continuously exposed pregnancies in the national German Embryotox patient database
药物引起的不良妊娠结局:德国国家 Embryotox 患者数据库中非持续暴露妊娠的创新事件历史分析
- 批准号:
288952608 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Planning and nonparametric inderence for multistate time-to-event data such as diesease occurrences and disease durations
多状态事件时间数据(例如疾病发生和疾病持续时间)的规划和非参数推理
- 批准号:
189200139 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Efficacy of an allogeneic transplant and understanding the complex competing risks and multistate structure of aftercare - Analysis of German transplant registry data -
同种异体移植的功效以及了解复杂的竞争风险和善后护理的多态结构 - 德国移植登记数据分析 -
- 批准号:
437606867 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Simulation-based inference for Smions Observatory
斯米恩斯天文台基于模拟的推理
- 批准号:
2885648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Simulation-based Inference through Random Features
通过随机特征进行基于模拟的推理
- 批准号:
2310834 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
- 批准号:
2330794 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Spatial Knowledge Acquisition by Robot Question Generation Based on Active Inference
基于主动推理的机器人问题生成空间知识获取
- 批准号:
23K16975 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant