Multi-objective optimization of dividing wall columns under model and process parametric uncertainties

模型和工艺参数不确定性下的间壁塔多目标优化

基本信息

  • 批准号:
    440334941
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Dividing wall columns have the potential of significant energy savings compared to conventional distillation trains, with high product purities at the same time. This potential can be realized if the column design is optimally adapted to the respective separation task. In preliminary work by the applicants, novel approaches for model-based simulation and optimization have been developed for this purpose. In this project, the aim is to take uncertainties into account in these optimization results and to develop strategies for reacting to such uncertainties in the best possible way. On the one hand, this involves operational uncertainties - such as fluctuating reactant compositions - and on the other hand, uncertainties in physical model parameters, such as for the description of thermodynamic equilibria. The aim of this project is to develop model-based strategies in the choice of degrees of freedom in the design and operation of the columns, so that these uncertainties have as little impact as possible on the energy-saving potential and product purities addressed above. The scientific challenge is to distinguish between the degrees of freedom in design and operational management: The former are fixed once at the beginning and cannot be changed thereafter; the latter are flexibly adjustable during operation within a certain window. This leads to a novel class of multi-objective optimization problems. Based on the preliminary work of the applicants, there is now the possibility to solve these and thus to arrive at insights and methods relevant for the application.
与传统的蒸馏系统相比,分隔壁塔具有显著的节能潜力,同时具有高的产品纯度。如果柱设计最佳地适应相应的分离任务,则可以实现这种潜力。在申请人的初步工作中,已经为此目的开发了用于基于模型的模拟和优化的新方法。在这个项目中,目的是考虑到这些优化结果的不确定性,并制定战略,以最好的方式对这种不确定性作出反应。一方面,这涉及操作的不确定性-例如反应物成分的波动-另一方面,涉及物理模型参数的不确定性,例如热力学平衡的描述。本项目的目的是在塔的设计和操作中选择自由度时开发基于模型的策略,以便这些不确定性对上述节能潜力和产品纯度的影响尽可能小。科学的挑战是区分设计和运营管理的自由度:前者在开始时是固定的,此后无法改变;后者在一定的窗口内可以灵活调整。这导致了一类新的多目标优化问题。基于申请人的初步工作,现在有可能解决这些问题,从而获得与应用相关的见解和方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Bortz其他文献

Professor Dr. Michael Bortz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Bortz', 18)}}的其他基金

Berechnung von Grundzustands- und thermodynamischen Eigenschaften integrabler, eindimensionaler Quantensysteme
可积一维量子系统的基态和热力学性质的计算
  • 批准号:
    5448574
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Data Generation and Knowledge-based Augmentation: Batch Distillation
数据生成和基于知识的增强:批量蒸馏
  • 批准号:
    498964862
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Kernel Methods for Confidence Regions in Optimal Experimental Design and Parameter Estimation
最优实验设计和参数估计中置信区域的核方法
  • 批准号:
    466397921
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Multi-step and Multi-objective Optimization of EVs Charging through Coupled Power-traffic Simulation
通过电力-交通耦合仿真对电动汽车充电进行多步骤、多目标优化
  • 批准号:
    23K13513
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development and application of learning theory for uncertainty in Bayesian deep learning based on multi-objective optimization
基于多目标优化的贝叶斯深度学习不确定性学习理论发展及应用
  • 批准号:
    23K16948
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Intelligent and distributed multi-objective methods for optimization and control of multiagents/cooperative systems
用于多智能体/协作系统优化和控制的智能分布式多目标方法
  • 批准号:
    RGPIN-2021-03737
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Game Theoretic Multi-Objective Optimization for Informed Patient Centered Care
博弈论多目标优化以患者为中心的知情护理
  • 批准号:
    545889-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10430402
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Study of distributed evolutionary computation for interrelated multi-objective optimization problems
相互关联的多目标优化问题的分布式进化计算研究
  • 批准号:
    22K12185
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-objective aperture optimization in radiation therapy treatment planning
放射治疗治疗计划中的多目标孔径优化
  • 批准号:
    546087-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10594577
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Multi-Objective Optimization of Chemical and Biochemical Processes
化学和生化过程的多目标优化
  • 批准号:
    RGPIN-2018-04433
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
  • 批准号:
    2120684
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了