Kernel Methods for Confidence Regions in Optimal Experimental Design and Parameter Estimation
最优实验设计和参数估计中置信区域的核方法
基本信息
- 批准号:466397921
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Reliable models are the prerequisite for virtual process design and process optimization. For this purpose, models are calibrated on measurement data, resulting in uncertainties due to inaccuracies in the measurements and in the models. A measure of reliability are confidence regions in the space of the model parameters and prediction errors for the model functions. For nonlinear models, these have so far been obtained from linearizations leading to elliptical confidence regions and the corresponding prediction errors. Due to the linearization, these do not adequately represent the real uncertainties. As a result, overly optimistic or overly pessimistic assumptions about the uncertainties may be made. In this project, kernel-based classification methods, the Kernel Minimal Enclosing Balls (KMEB), combined with adaptive Bayes-like data generation, will be used and further developed to arrive at a realistic quantification of the uncertainties. The core trick allows arbitrarily shaped confidence regions by mapping them to an abstract feature space in which the elliptical shape (even spherical) is again assumed. With these resulting uncertainty measures ideally fitted to the model nonlinearities, methods for parameter estimation and optimal experimental design should be numerically much more robust and efficient, and more reliable in terms of results. The feasibility and usefulness of this method for chemical engineering is exemplified for a reactive multiphase system. Such systems are known for strong nonlinearities with discontinuous and non-differentiable behavior; parameter estimation and experimental design for them are correspondingly challenging. The KMEB-based technique, initially demonstrated here with simple examples, is developed and used to obtain promising new methods for parameter estimation and optimal experimental design. Data from the model are collected from adaptive Bayesian sampling strategies; measurement data come from experiments conducted in the project.
可靠的模型是虚拟工艺设计和工艺优化的前提。为此目的,根据测量数据校准模型,由于测量和模型中的不准确性而导致不确定性。可靠性的度量是模型参数空间中的置信区域和模型函数的预测误差。对于非线性模型,迄今为止,这些都是从导致椭圆置信区域和相应的预测误差的线性化中获得的。由于线性化,这些不足以代表真实的不确定性。因此,可能会对不确定性作出过于乐观或过于悲观的假设。在这个项目中,基于核的分类方法,核最小封闭球(KMEB),结合自适应贝叶斯数据生成,将被使用和进一步发展,以达到一个现实的量化的不确定性。核心技巧允许任意形状的置信区域,将它们映射到一个抽象的特征空间,在这个空间中再次假设椭圆形(甚至球形)。这些不确定性措施理想地拟合模型的非线性,参数估计和最优实验设计的方法应该是数值上更强大和有效的,更可靠的结果。以多相反应体系为例,说明了该方法在化工领域的可行性和实用性。这种系统是已知的强非线性与不连续和不可微的行为,参数估计和实验设计,他们相应的挑战。KMEB为基础的技术,最初在这里展示了简单的例子,开发和使用,以获得有前途的新方法参数估计和最优实验设计。模型中的数据是从自适应贝叶斯抽样策略中收集的;测量数据来自该项目中进行的实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Bortz其他文献
Professor Dr. Michael Bortz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Bortz', 18)}}的其他基金
Berechnung von Grundzustands- und thermodynamischen Eigenschaften integrabler, eindimensionaler Quantensysteme
可积一维量子系统的基态和热力学性质的计算
- 批准号:
5448574 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Fellowships
Data Generation and Knowledge-based Augmentation: Batch Distillation
数据生成和基于知识的增强:批量蒸馏
- 批准号:
498964862 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Multi-objective optimization of dividing wall columns under model and process parametric uncertainties
模型和工艺参数不确定性下的间壁塔多目标优化
- 批准号:
440334941 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing new methods for computing confidence intervals for clinical trials with subpopulation selection
开发计算亚群选择临床试验置信区间的新方法
- 批准号:
2734726 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Causal Inference Methods for Mediation and Comparisons of Confidence Regions
用于中介和置信区域比较的因果推理方法
- 批准号:
1854934 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Causal Inference Methods for Mediation and Comparisons of Confidence Regions
用于中介和置信区域比较的因果推理方法
- 批准号:
1810837 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Effective feedback methods to improve student confidence and learning outcomes in Computing
有效的反馈方法可提高学生对计算机的信心和学习成果
- 批准号:
1763906 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Studentship
HBCU-UP TIP: Enhancing the Interest, Pedagogical Skills, Confidence and Expertise of Preservice K-6 Teachers to Teach Science Utilizing Research-Based Instructional Methods
HBCU-UP 提示:提高职前 K-6 教师利用基于研究的教学方法教授科学的兴趣、教学技能、信心和专业知识
- 批准号:
1332415 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Simultaneous Confidence Regions for Functional Data Analysis: Theory and Methods
函数数据分析的同时置信区域:理论与方法
- 批准号:
1007594 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Inference Methods and Confidence Bounds for Signal Authentication and Traitor Tracing
信号认证和叛徒追踪的统计推断方法和置信界限
- 批准号:
0729061 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Bayesian/Learning Methods and Confidence Bounds for Signal Authentication, Traitor Tracing, and Forensics
信号认证、叛徒追踪和取证的贝叶斯/学习方法和置信界限
- 批准号:
0635137 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical Methods for Gene Mapping Based on a Confidence Set Approach
基于置信集方法的基因作图统计方法
- 批准号:
0306800 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing grant
New and computationally feasible methods of constructing efficient and exact confidence limits from count data.
从计数数据构建有效且精确的置信限的新的且计算上可行的方法。
- 批准号:
DP0342873 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Discovery Projects














{{item.name}}会员




