Individual shape adaptation of microlenses by means of electric fields

通过电场实现微透镜的个体形状适应

基本信息

项目摘要

Microlenses show a wide application in optics. Thereby it would be especially of advantage to allow an individualized form of such microlenses. In general, 3D printing enables a high level of individualization of components.The aim of this project is to investigate whether it is possible to deform a 3D printed liquid polymer (=microlens) with the help of electric fields and then cure it. This allows a new way to realize microlenses with free-form surfaces. A basic understanding, e.g. with regard to the relationship between the distribution of the electric fields and the lens shape, as well as with respect to the material properties of the polymers and the resulting forms are worked out in this project. It is also necessary to investigate how the optical properties relate to the realizable shape and the material properties. The general aim of this project is to examine the topic from different perspectives, i.e. to consider the interplay of optical properties, 3D printing, electrical fields and material properties experimentally and via simulation models in order to gain a holistic, deeper understanding. In detail, the following goals should be achieved:The influence of different electric field distributions (at different intensities) on the deformation of the printed liquid polymer droplets (for different materials, substrates and print volumes) has to be investigated. Here, material parameters such as polarizability, viscosity, shrinkage during curing or topics such as the interaction between substrate and droplets play an important role. In order to grasp these relationships and to gain a deeper understanding, it is necessary to build up corresponding simulation models in Matlab and ANSYS and to validate them on the basis of experiments. In doing so, it is crucial to correlate the material aspects with the deformations achieved by the electric fields, which ultimately determines the optical performance of the microlens.The above-mentioned examinations should then be expanded. On the one hand, a pre-structuring of the substrates needs to be carried out in order to enable further boundary conditions for the formation of droplets and deformation. On the other hand, a defined symmetrical surface structure should be generated, e.g. by standing surface waves, as this would be desirable for many optical applications. Once again, it is important to combine the interplay of optics, electrical fields and material aspects with each other and to consider them holistically.Finally, a micro lens system based on several lenses should be realized and studied in detail. In addition to the question of the optical performance of the system, questions wrt. material science (diffusion, cracks, etc.) need to be addressed as well, e.g. at the boundary layer between two microlens elements.
微透镜在光学中有着广泛的应用。因此,允许这种微透镜的个性化形式将是特别有利的。一般来说,3D打印可以实现高度的个性化组件。本项目的目的是研究是否可以在电场的帮助下使3D打印的液体聚合物(=微透镜)变形,然后固化。这为实现具有自由曲面的微透镜提供了一种新的方法。在这个项目中,我们对电场分布和透镜形状之间的关系,以及聚合物的材料特性和最终形成的形状有了基本的了解。还需要研究光学性质与可实现的形状和材料性质之间的关系。该项目的总体目标是从不同的角度研究该主题,即通过实验和模拟模型来考虑光学特性,3D打印,电场和材料特性的相互作用,以便获得全面,更深入的理解。详细地说,应该实现以下目标:必须研究不同电场分布(在不同强度下)对印刷的液体聚合物液滴(对于不同材料、基底和印刷体积)的变形的影响。在这里,材料参数,如极化率,粘度,固化过程中的收缩或主题,如基板和液滴之间的相互作用起着重要的作用。为了更好地把握这些关系,有必要在Matlab和ANSYS中建立相应的仿真模型,并在实验的基础上进行验证。在此过程中,将材料特性与电场产生的变形联系起来是至关重要的,这最终决定了微透镜的光学性能。一方面,需要进行基底的预结构化,以便能够实现用于形成液滴和变形的另外的边界条件。另一方面,应当例如通过驻波产生限定的对称表面结构,因为这对于许多光学应用是期望的。再次强调,必须将光学、电场和材料方面的相互作用联合收割机结合起来,并从整体上考虑它们。最后,应实现并详细研究基于多个透镜的微透镜系统。除了系统的光学性能的问题,问题wrt。材料科学(扩散、裂纹等)例如,在两个微透镜元件之间的边界层处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Andreas Heinrich其他文献

Professor Dr. Andreas Heinrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Andreas Heinrich', 18)}}的其他基金

Magnetooptische Untersuchung von Wechselwirkungen des magnetischen Flusses in der gemischten Phase eines Supraleiters mit Oberflächenwellen
超导体混合相中磁通量与表面波相互作用的磁光研究
  • 批准号:
    5428854
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

中医药协同SHAPE-T细胞治疗晚期胰腺癌的临床研究和免疫评价
  • 批准号:
    2024PT012
  • 批准年份:
    2024
  • 资助金额:
    17.5 万元
  • 项目类别:
    省市级项目
小G蛋白ROP2动态定位的分子调控机理研究
  • 批准号:
    31701224
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
骨髓基质干细胞体外构建耳廓形态软骨
  • 批准号:
    30973131
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
子流形几何中的变分问题
  • 批准号:
    10971110
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
高交联液晶环氧树脂的形状记忆特性研究
  • 批准号:
    20974121
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
  • 批准号:
    10751361
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of the mechanism of adaptation of spindle shape according to chromosome number
阐明根据染色体数目适应纺锤体形状的机制
  • 批准号:
    23H02627
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SPORE University of Texas M. D. Anderson Cancer Center-Leukemia
SPORE 德克萨斯大学 MD 安德森癌症中心 - 白血病
  • 批准号:
    10911713
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Eco2adapt: Ecosystem-based Adaptation and Changemaking to Shape, Protect and Maintain the Resilience of Tomorrow’s Forests
Eco2adapt:基于生态系统的适应和变革,以塑造、保护和维持未来森林的恢复力
  • 批准号:
    10085545
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Worldwide Mapping of Air Pollution Exposure Patterns on Aging Brain Health
全球空气污染暴露模式对大脑老化影响的绘制
  • 批准号:
    10412874
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Worldwide Mapping of Air Pollution Exposure Patterns on Aging Brain Health
全球空气污染暴露模式对大脑老化影响的绘制
  • 批准号:
    10697354
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
2022 Intermediate Filaments Gordon Research Conference and Seminar
2022年中间长丝戈登研究会议暨研讨会
  • 批准号:
    10469043
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanistic basis of how LD-transpeptidases protect against outer membrane defects
LD-转肽酶如何防止外膜缺陷的机制基础
  • 批准号:
    10586069
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Impact of Early Life Experience on Vagal Neurons and Circuits
早期生活经历对迷走神经元和回路的影响
  • 批准号:
    10461651
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了