Analysis of Transport Phenomena by a Three-Dimensional Fokker-Planck Code

用三维福克-普朗克码分析输运现象

基本信息

  • 批准号:
    03808001
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 1992
  • 项目状态:
    已结题

项目摘要

In order to describe the transport phenomena in a tokamak plasma in terms of the velocity distribution function, a drift-kinetic formulation has been developed to derive coupled three-dimensional Fokker-Planck equations. The three-dimensional Fokker-Planck numerical code has been extended to include the spatial diffusion due to Coulomb collisions and electromagnetic fluctuations.1. From the analysis of the drift orbit, the change of characteristic radius due to the velocity modification through Coulomb collision or wave-particle interaction has been analytically calculated. The velocity diffusion term, the spatial diffusion term and the cross terms in the Fokker-Planck equation are derived from the collision term. The periodicity of the collisionless drift orbit enables us to Fourier-expand the distribution function. Poloidal angle dependence of the distribution has been included for the first time.2. The bounce-averaged three-dimensional Fokker-Planck code has been employed to study the heating and current drive by the RF waves. Taking account of the spatial diffusion of the fast electrons, the radial profile of the driven current as well as the current drive efficiency have been obtained.3. By employing the full implicit method, the numerical stability of the three-dimensional Fokker-Planck code has been drastically improved. The upper-limit of the input power in the RF current drive is much enlarged compared with the alternative directional implicit method.
为了用速度分布函数描述托卡马克等离子体中的输运现象,发展了漂移-动力学方程,导出了耦合的三维Fokker-Planck方程。三维Fokker-Planck数值程序已经扩展到包括由于库仑碰撞和电磁涨落引起的空间扩散。从漂移轨道的分析出发,解析地计算了库仑碰撞或波粒相互作用引起的速度修正引起的特征半径的变化。由碰撞项导出了Fokker-Planck方程中的速度扩散项、空间扩散项和交叉项。无碰撞漂移轨道的周期性使我们能够对分布函数进行傅立叶展开。首次考虑了极向角对分布的影响.采用反弹平均三维福克-普朗克程序研究了射频波的加热和电流驱动。考虑到快电子的空间扩散,得到了驱动电流的径向分布和电流驱动效率.通过采用全隐式方法,三维Fokker-Planck程序的数值稳定性得到了显著改善。与交替方向隐式法相比,射频电流驱动法的输入功率上限大大提高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKUYAMA Atsushi其他文献

Investigation into MR angiography as a possible replacement for rotational angiography or CT angiography for cerebrovascular computational fluid dynamics
研究 MR 血管造影可能替代旋转血管造影或 CT 血管造影用于脑血管计算流体动力学
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ISODA Haruo;YONEYAMA Yuya;FUKUYAMA Atsushi;TERADA Masaki;KAMIYA Masaki;OTSUBO Kenichi;KOSUGI Takafumi;KOMORI Yoshiaki;NAGANAWA Shinji
  • 通讯作者:
    NAGANAWA Shinji
Transport Simulation of PLATO Tokamak Plasma Using Integrated Code TASK
使用集成代码 TASK 进行 PLATO 托卡马克等离子体的输运模拟
  • DOI:
    10.1585/pfr.16.1403093
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    MOCHINAGA Shota;KASUYA Naohiro;FUKUYAMA Atsushi;NAGASHIMA Yoshihiko;FUJISAWA Akihide
  • 通讯作者:
    FUJISAWA Akihide
Simulation of Co-Existence of Ballooning and Kink Instabilities in PLATO Tokamak Plasma
PLATO 托卡马克等离子体中膨胀和扭结不稳定性共存的模拟
  • DOI:
    10.1585/pfr.15.1403052
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    TOMIMATSU Shuhei;KASUYA Naohiro;SATO Masahiko;FUKUYAMA Atsushi;YAGI Masatoshi;NAGASHIMA Yoshihiko;FUJISAWA Akihide
  • 通讯作者:
    FUJISAWA Akihide

FUKUYAMA Atsushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKUYAMA Atsushi', 18)}}的其他基金

Accuracy verification of hemodynamic analysis by MR Images using an imaging time reduction technique
使用成像时间缩短技术通过 MR 图像验证血流动力学分析的准确性
  • 批准号:
    19K12863
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Kinetic Integrated Simulation Code for Toroidal Plasmas
环形等离子体动力学综合仿真代码的开发
  • 批准号:
    20226017
  • 财政年份:
    2008
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Kinetic Transport Simulation in Toroidal Plasmas
环形等离子体中的动力学输运模拟
  • 批准号:
    18560790
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Highly Adaptive and Parallel Processing Simulation of RF Plasma Production
射频等离子体生产的高度自适应并行处理模拟
  • 批准号:
    14380210
  • 财政年份:
    2002
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Two-Dimensional Analysis of Transport Phenomena in Tokamak Plasmas
托卡马克等离子体中输运现象的二维分析
  • 批准号:
    12680489
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analyses of Transport and Stability in Tokamaks with Hollow Current Profile
空心流剖面托卡马克中的输运和稳定性分析
  • 批准号:
    09680493
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simulation of Transient Transport Phenomena in Toroidal Plasmas
环形等离子体中瞬态输运现象的模拟
  • 批准号:
    06680479
  • 财政年份:
    1994
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Analysis of Magnetic Helicity Injection by RF Waves
射频波磁螺旋注入分析
  • 批准号:
    01580011
  • 财政年份:
    1989
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Integro-Differential Analysis of Wave Propagation in an Inhomogeneous High-Temperature Plasma
非均匀高温等离子体中波传播的积分微分分析
  • 批准号:
    62580007
  • 财政年份:
    1987
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Quantitative Analysis of Wave Absorption near Cyclotron Resonance in an Inhomogeneous Magnetic Field
非均匀磁场中回旋共振附近波吸收的定量分析
  • 批准号:
    60580010
  • 财政年份:
    1985
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
  • 批准号:
    2339644
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
Analysis of photoresponses and transport phenomena by microscopic nonlinear response theory
用微观非线性响应理论分析光响应和输运现象
  • 批准号:
    23K03274
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Novel Thermal Transport Phenomena in Quantum Materials
量子材料中的新型热传输现象
  • 批准号:
    2317618
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Continuing Grant
Deep Learning for Understanding Multiscale Particle Transport Phenomena Inside Fuel Cells
用于理解燃料电池内部多尺度粒子传输现象的深度学习
  • 批准号:
    22KF0042
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Interfacial quantum transport phenomena in heterostructures of topological insulators
拓扑绝缘体异质结构中的界面量子输运现象
  • 批准号:
    22KJ0902
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Solid-liquid-vapor interfacial transport phenomena coupled with wetting/condensation/evaporation
固-液-汽界面传输现象与润湿/冷凝/蒸发相结合
  • 批准号:
    22H01416
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research Initiation Award: A Boltzmann Model for Multi-Scale and Multi-Physics/Chemistry Transport Phenomena in Porous Media
研究启动奖:多孔介质中多尺度和多物理/化学输运现象的玻尔兹曼模型
  • 批准号:
    2200515
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Development of Thermal Contact Resistance Prediction Formula Considering Details of Heat Transport Phenomena in Solid-Solid Contact Surface
考虑固-固接触表面传热现象细节的热接触热阻预测公式的开发
  • 批准号:
    22K03949
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Study on Transport Phenomena of Spatiotemporal Chaos Using Nematic Electroconvection
向列电对流时空混沌输运现象的实验研究
  • 批准号:
    22K03469
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了