The regulation of the cytokine gene expression in cell growth and differentiation

细胞生长和分化过程中细胞因子基因表达的调节

基本信息

  • 批准号:
    04670288
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1992
  • 资助国家:
    日本
  • 起止时间:
    1992 至 1994
  • 项目状态:
    已结题

项目摘要

Two structurally related transcription factors, IRF-1 and IRF-2 were originally identified as regulators of the interferon (IFN) system. It has been shown that IRF-1 functions as an activator for the type I IFN genes and some IFN-inducible genes, whereas IRF-2 represses the effect of IRF-1 by competing for binding to the same DNA sequence elements (IRF-E_8). We demonstrated a role for IRF-1 as a tumor suppressor ; overexpression of the repressor IRF-2 in NIH3T3 cells causes cell transformation and this cell transformation is suppressed by concomitant overexpression of the activator IRF-1. To examine further the role of IRF-1 and IRF-2 in vivo, we genereted mice with a null mutation in the IRF-1 gene or IRF-2 gene by gene targetting. We demonstrate that (i) infection with BCG was more severe in IRF-1^<-/-> mice than in wild-type mice ; (ii) the inhibition of encephalimyocarditis virus (EMCV) replication by IFN was impared in cells from IRF-1^<-/-> mice and these mice were less resistant than wild-type mice to EMCV infection ; (iii) primary embryonic fibroblasts (EFs) with a null mutation in the IRF-1 gene (IRF-1^<-/-> mice) are susceptible to transformation by an activated form of c-Ha-ras, a property also seen in the EFs from p53^<-/-> mice, but not in wild-type EFs. Thus, IRF-1 contributes to antibacterial, antiviral, and antitumor functions. The human IRF-1 gene has been mapped to 5q31.1. It has been demonstrated that one or both human IRF-1 alleles were deleted in MDS and leukemia chracterrized by 5q abberations. We also found that the accelerated exon skipping of human IRF-1 gene may cause the inactivation of IRF-1 and thereby contribute to the development of human hematopoietic malignancies.
两个结构上相关的转录因子IRF-1和IRF-2最初被确定为干扰素系统的调节因子。已有研究表明,IRF-1可以激活I型干扰素基因和一些干扰素诱导基因,而IRF-2通过竞争结合相同的DNA序列元件(IRF-E_8)来抑制IRF-1的作用。我们证明了IRF-1作为肿瘤抑制因子的作用;在NIH3T3细胞中过表达抑制因子IRF-2会导致细胞转化,而伴随的激活因子IRF-1的过表达会抑制这种细胞转化。为了进一步研究IRF-1和IRF-2在体内的作用,我们通过基因打靶的方法产生了IRF-1基因或IRF-2基因零突变的小鼠。我们发现:(I)IRF-1;-/-&gt;小鼠感染卡介苗比野生型小鼠更为严重;(Ii)在IRF-1;-/-&gt;小鼠细胞中,干扰素对脑心肌炎病毒(EMCV)复制的抑制作用受到损害,并且这些小鼠对EMCV感染的抵抗力低于野生型小鼠;(Iii)IRF-1基因零突变的原代胚胎成纤维细胞(EFS)。小鼠)易受c-Ha-ras活化形式的影响,这一特性也见于P53^-lt;-/-&gt;小鼠的EFS中,但在野生型EFS中则不然。因此,IRF-1具有抗菌、抗病毒和抗肿瘤功能。人类IRF-1基因已定位于5q31.1。已有研究表明MDS和白血病患者中有一个或两个人的IRF-1等位基因缺失。我们还发现,人类IRF-1基因外显子的加速跳跃可能导致了IRF-1的失活,从而促进了人类血液系统恶性肿瘤的发展。

项目成果

期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hisashi Harada: "Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia;leukemia;a possible mechanism of tumor suppressor inactivation" Oncogene. 9. 3313-3320 (1994)
Hisashi Harada:“人类骨髓增生异常中 IRF-1 mRNA 的加速外显子跳跃;白血病;肿瘤抑制因子失活的可能机制”Oncogene。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Harada: "Structure and regulation of the human interferon regulatory factor 1(IRF-1)and(IRF-2)genes" Mol.Cell.Biol.14. 1500-1509 (1994)
Hisashi Harada:“人干扰素调节因子 1(IRF-1) 和 (IRF-2) 基因的结构和调节”Mol.Cell.Biol.14。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Harada: "Anti-Oncogenic and Oncogenic Potentials of Interferon Requlatory Factors-1 and -2." Science. 259. 971-974 (1994)
Hisashi Harada:“干扰素调节因子-1 和-2 的抗癌和致癌潜力。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Harada: "Cellular Commitment to Cncogene-Induced Transformation or Apoptosis is Dependent on the Transcripton Factor IRF-1." Cell. 77. 829-839 (1994)
Hisashi Harada:“细胞对 Cncgene 诱导的转化或凋亡的承诺取决于转录因子 IRF-1。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tanaka, N., Ishihara, M., Kitagawa, M., Harada, H., Kimura, T., Matsuyama, T., Lamphier, M.S., Aizawa, S., Mak, T.W.and Taniguchi, T.: "Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the ranscription factor IRF-1." Cel
Tanaka, N.、Ishihara, M.、Kitakawa, M.、Harada, H.、Kimura, T.、Matsuyama, T.、Lamphier, M.S.、Aizawa, S.、Mak, T.W. 和 Taniguchi, T.:“蜂窝
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HARADA Hisashi其他文献

HARADA Hisashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HARADA Hisashi', 18)}}的其他基金

Development of resource-recycling material production technology using marine microalgae
利用海洋微藻开发资源循环材料生产技术
  • 批准号:
    16K00652
  • 财政年份:
    2016
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
  • 批准号:
    10734863
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
Development of RNA dynamics recording and study of RNA mediated regulatory gene network
RNA动态记录的发展和RNA介导的调控基因网络的研究
  • 批准号:
    23K18108
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
  • 批准号:
    10665735
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
Multi-omics Gene Network Identification (Project 4)
多组学基因网络识别(项目4)
  • 批准号:
    10493708
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
Develop explainable AI strategies for uncovering molecular mechanism behind disease based on gene network analysis
基于基因网络分析,开发可解释的人工智能策略,揭示疾病背后的分子机制
  • 批准号:
    22K12259
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of gene network Regulating initial sexual differentiation of quail primordial germ cells
鹌鹑原始生殖细胞初始性分化调控基因网络分析
  • 批准号:
    22K05949
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constructions of data analysis scheme by gene-network approaches for non-model origanism
非模式生物基因网络数据分析方案的构建
  • 批准号:
    21K19126
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
  • 批准号:
    10305241
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
Deciphering the Genomics of Gene Network Regulation of T Cell and Fibroblast States in Autoimmune Inflammation
破译自身免疫炎症中 T 细胞和成纤维细胞状态的基因网络调控的基因组学
  • 批准号:
    10472615
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
Integration of Feeding Time and Glucose Metabolism by the Circadian Gene Network
昼夜节律基因网络整合进食时间和葡萄糖代谢
  • 批准号:
    10490335
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了