Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
基本信息
- 批准号:10665735
- 负责人:
- 金额:$ 46.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAffectAlgorithmsBase SequenceBindingBinding SitesBiological AssayBiological ModelsCRISPR interferenceCell modelCellsChIP-seqChromatinChromatin LoopClustered Regularly Interspaced Short Palindromic RepeatsComputing MethodologiesDataData SetDevelopmentDiseaseElementsEmbryoEndodermEnhancersEquationEventGene ExpressionGenesGeneticGenetic VariationGenomicsHuman DevelopmentIndividualKineticsLearningLocationMachine LearningMapsMeasurementMethodsModelingPhenotypePropertyQuantitative Trait LociRegulatory ElementReporterReportingResolutionSOX17 geneStimulusStructureSystemTestingTimeTissuesTrainingVariantWorkXCL1 genecofactorcombinatorialdesignembryonic stem cellepigenomicsgene networkgene regulatory networkgenome wide association studygenomic locusgenomic variationhuman diseaseimprovedin vivoinnovationknock-downmachine learning modelmodel buildingnetwork modelsnovelpromoterresponsesimulationsingle-cell RNA sequencingstem cell differentiationtemporal measurementtime usetranscription factortranscriptome sequencing
项目摘要
Most disease associated GWAS variants have relatively modest effects on expression in reporter or
CRISPR perturbation assays. In addition, enhancer disruption in vivo often has surprisingly weak
phenotypic consequences. We hypothesize that a critical missing element is our lack of quantitative
models of how multiple TFs interact at an enhancer, and how multiple enhancers interact at a locus to
respond to perturbations in a nonlinear way through altered gene network activity. Predicting the impact
of genomic variation thus requires quantitative modeling of how one variant's impact depends on other
variants through their combined effect on altered cellular regulatory state. The central aim of this
proposal is to develop computational methods to infer quantitative models of these combinatorial
interactions by training on temporally-resolved measurements of gene activity, enhancer activity, and
core cell fate-regulating transcription factor (TF) activity across cell state transitions in early human
development. Our preliminary studies show that while promoter knockdown has robust effects on target
gene expression, individual enhancer knockdown is often weaker and affects temporal transition
dynamics, but not the final steady state. We show that gene network models based on sequence-based
machine learning are consistent with these observations. We propose improvements to our sequence
based models to develop kinetic rate equation and stochastic simulation gene network models to predict
the variable and often temporal effects of enhancer perturbation. We will generate high time resolution
ATAC, H3K27ac, and scRNA-seq data to train these models, and validate the gene network predictions
of network response with CRISPRi in a native genomic context. We will first focus on our embryonic-
stem-cell to definitive-endoderm (ESC-DE) system, and we will then develop methods to generalize
application of these focused models to larger ENCODE regulatory datasets. Our work will enable a
quantitative understanding of how the altered activity of regulatory elements affects the stability and
dynamics of the gene regulatory networks within which the element operates, and how they play a role in
controlling developmentally important and disease relevant cell state transitions.
大多数疾病相关的GWAS变体对报告基因或转录因子的表达具有相对适度的影响。
CRISPR扰动测定。此外,增强子在体内的破坏通常具有令人惊讶的弱的表达。
表型的后果我们假设,一个关键的缺失因素是我们缺乏定量的
多个TF如何在增强子处相互作用,以及多个增强子如何在基因座处相互作用,
通过改变基因网络活动以非线性方式对扰动作出反应。预测影响
因此,基因组变异的研究需要对一个变异的影响如何依赖于其他变异的影响进行定量建模。
变异通过它们对改变的细胞调节状态的组合作用。其核心目标是
建议是开发计算方法来推断这些组合的定量模型,
通过对基因活性、增强子活性和
早期人类细胞状态转换过程中核心细胞命运调节转录因子(TF)活性
发展我们的初步研究表明,虽然启动子敲除对靶基因有很强的影响,
基因表达,单个增强子敲除通常较弱,并影响时间转换
动力学,但不是最终的稳定状态。我们证明了基于序列的基因网络模型
机器学习与这些观察是一致的。我们对我们的序列提出了改进
基于模型开发动力学速率方程和随机模拟基因网络模型预测
增强子扰动的可变且经常是暂时的影响。我们将生成高时间分辨率
ATAC、H3 K27 ac和scRNA-seq数据来训练这些模型,并验证基因网络预测
在天然基因组背景下CRISPRi的网络响应。我们先关注我们的胚胎-
干细胞到定形内胚层(ESC-DE)系统,然后我们将开发方法来推广
将这些重点模型应用于更大的ENCODE监管数据集。我们的工作将使
定量了解调节元件的活性改变如何影响稳定性,
该元件在其中运作的基因调控网络的动态,以及它们如何在
控制发育重要的和疾病相关的细胞状态转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Beer其他文献
Machine Learning Sequence Modeling Identifies Gene Regulatory Responses to Bone Marrow Stromal Interactions in Multiple Myeloma
- DOI:
10.1182/blood-2023-186981 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Milad Razavi-Mohseni;Dustin Shigaki;Michael A Beer - 通讯作者:
Michael A Beer
Michael A Beer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Beer', 18)}}的其他基金
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10297375 - 财政年份:2021
- 资助金额:
$ 46.39万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10833813 - 财政年份:2021
- 资助金额:
$ 46.39万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10471939 - 财政年份:2021
- 资助金额:
$ 46.39万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10840531 - 财政年份:2021
- 资助金额:
$ 46.39万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10630157 - 财政年份:2021
- 资助金额:
$ 46.39万 - 项目类别:
Systematic Identification of Core Regulatory Circuitry from ENCODE Data
从 ENCODE 数据系统识别核心监管电路
- 批准号:
10238262 - 财政年份:2017
- 资助金额:
$ 46.39万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9097757 - 财政年份:2013
- 资助金额:
$ 46.39万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8556758 - 财政年份:2013
- 资助金额:
$ 46.39万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9304811 - 财政年份:2013
- 资助金额:
$ 46.39万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8889287 - 财政年份:2013
- 资助金额:
$ 46.39万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.39万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.39万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 46.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 46.39万 - 项目类别:
Studentship