Introduction of Error Estimation for Clarifying Fractal Phonomena

引入误差估计以澄清分形现象

基本信息

  • 批准号:
    06650070
  • 负责人:
  • 金额:
    $ 0.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

The purpose of this study is to introduce the concept of reliability in the measurement concerning fractal phenomena, by proposing techniques of error estimation. The following outcomes are obtained :1. In the measurement of the "fractal dimension" of a realization "self-similar recurrent event process" proposed by Mandelbrot, two approaches are considered to be important. This study derived analytical error estimations of the obtained values by these approaches. The results suggest that a relatively small number of data are enough for obtaining accurate values for an ideal process.2. A new approach for testing the randomness of heteroskedastic time series data is proposed, and is successfully applied to finacial data. This approach detects existence of "mean reversion, " which is a feature of fractal caused by long term memory. This result also detects other types of serial correlations, which is important from financial point of view.3. In the analysis of the mechanism of "mean reversion, " it was found that stock market indices may behave in substantially different ways in the macroeconomic analysis. One must be careful in selecting them in their analysis.4. The error of observed "length" is analytically calculated for a polygonal approximation to a path of Brownian motion. This result is expected to show how the bias of observed "fractal dimension" convergers to the true value when the number of sampling points increases.5. It was found that the "digital straightness" and "digital convexity" are characterized in terms of the "length" and the "absolute curvature" proposed in the author. This fact shows that a relation of "digital geometry" and the "length" used in this approach is very close.
本研究的目的是通过提出误差估计技术,在关于分形现象的测量中引入可靠性的概念。1.在Mandelbrot提出的实现“自相似循环事件过程”的“分维”测量中,有两种方法被认为是重要的。这项研究通过这些方法得出了所得值的解析误差估计。结果表明,相对较少的数据足以获得理想工艺的精确值。提出了一种检验异方差时间序列数据随机性的新方法,并成功地应用于金融数据。这种方法检测到“均值回归”的存在,这是由长期记忆引起的分形的一个特征。这一结果还检测到了其他类型的序列相关性,这从金融角度来看是重要的。在对“均值回归”机制的分析中,人们发现股市指数在宏观经济分析中的表现可能有很大的不同。在他们的分析中,我们必须谨慎地选择它们。对于布朗运动路径的多边形近似,对观测“长度”的误差进行了解析计算。这一结果有望说明随着采样点数量的增加,观测到的“分维”的偏差如何收敛到真值。研究发现,“数字直度”和“数字凸度”是用作者提出的“长度”和“绝对曲率”来表征的。这一事实表明,这种方法中使用的“数字几何”和“长度”之间的关系是非常密切的。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kishimoto: "Characterizing digital convexity and straightness in terms of "length" and "total absolute curvature"" Computer Vision and Image Understanding. (in press).
K.Kishimoto:“用“长度”和“总绝对曲率”来表征数字凸度和直线度”计算机视觉和图像理解。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuo Kishimoto: "Characterizing Digital Convexity and Digital Straightness in Terms of "Length"and "Total Absolute Curvature."" CVGIP:Image Understanding. (印刷中). (1995)
Kazuo Kishimoto:“用“长度”和“总绝对曲率”表征数字凸度和数字直线度。”CVGIP:图像理解(1995 年出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kishimoto: "A new approach for testing the randomness of heteroskedastic time series data" Financial Engineering and the Japanese Markets. Vol.2. 197-218 (1995)
K.Kishimoto:“一种测试异方差时间序列数据随机性的新方法”金融工程和日本市场。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
"K.Kishimoto: "Characterizing digital convexity and straightness in terms of "length" and "total absolute curvature"" Computer Vision and Image Understanding. 63(印刷中). (1996)
“K.Kishimoto:“根据“长度”和“总绝对曲率”表征数字凸度和直线度”计算机视觉和图像理解。63(印刷中)。(1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Kishimoto: "Characterizing digital convexity and straightness in terms of “length" and“total absolute curvature"" Computer Vision and Image Understanding. 63(印刷中). (1996)
K. Kishimoto:“根据“长度”和“总绝对曲率”表征数字凸度和直线度”计算机视觉和图像理解 63(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KISHIMOTO Kazuo其他文献

The Nikkei 225 Futures of the Osaka Stock Exchange Are Bullish When the Available Liquidity on the Ask Side Is Deeper
当询问方可用流动性加深时,大阪证券交易所日经 225 期货看涨
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LI Meng;Hui Xiaofeng;KISHIMOTO Kazuo
  • 通讯作者:
    KISHIMOTO Kazuo
Testing the Order Parameter of the Anderson Transition
测试安德森转变的阶次参数
  • DOI:
    10.1143/jpsj.81.104707
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    LI Meng;Hui Xiaofeng;KISHIMOTO Kazuo;K. Yakubo and S. Mizutaka
  • 通讯作者:
    K. Yakubo and S. Mizutaka

KISHIMOTO Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KISHIMOTO Kazuo', 18)}}的其他基金

A study on transaction volumes and intervals in the financial market and its applications
金融市场交易量和交易间隔研究及其应用
  • 批准号:
    22560059
  • 财政年份:
    2010
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A New Approach for Estimating the Policy Positions of Parties and Districts Based on the Spatial Voting Theory‥‥Theoretical and Empirical Analysis
基于空间投票理论的政党和地区政策立场测算新方法‥‥理论与实证分析
  • 批准号:
    17530097
  • 财政年份:
    2005
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cooperative Ruling Sets and Its Applications
合作规则集及其应用
  • 批准号:
    15560047
  • 财政年份:
    2003
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stock price changes with market impacts and its application for pricing derivative securities
股票价格随市场影响的变化及其在衍生证券定价中的应用
  • 批准号:
    13650060
  • 财政年份:
    2001
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Existence of Nash equilibria for optimum location problems and its applications
最优选址问题纳什均衡的存在性及其应用
  • 批准号:
    10650062
  • 财政年份:
    1998
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Testing Randomess of Heteroskedastic Time Series Data Base of Simulation
异方差时间序列仿真数据库随机性检验
  • 批准号:
    08650075
  • 财政年份:
    1996
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Study on wall stress model and error estimation for practical LES of separated and reattached flow
分离重附流实用LES壁面应力模型及误差估计研究
  • 批准号:
    21K14083
  • 财政年份:
    2021
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trajectory error estimation for machining center cutter path due to motion error between interpolation segments
插补段之间运动误差引起的加工中心刀具轨迹轨迹误差估计
  • 批准号:
    21K03811
  • 财政年份:
    2021
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Augmenting the Harmonic Balance Method by Stability Analysis and Error Estimation and its Application to Vibro-Impact Processes
通过稳定性分析和误差估计增强谐波平衡法及其在振动冲击过程中的应用
  • 批准号:
    438529800
  • 财政年份:
    2020
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Research Grants
Development of high fidelity, parameter tuning-free rendering method with error estimation
开发具有误差估计的高保真、免参数调整渲染方法
  • 批准号:
    18H03348
  • 财政年份:
    2018
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
  • 批准号:
    RGPIN-2014-04811
  • 财政年份:
    2018
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Discovery Grants Program - Individual
CIF:Small:Minimum Mean Square Error Estimation and Control of Partially-Observed Boolean Dynamical Systems with Applications in Metagenomics
CIF:Small:部分观测布尔动力系统的最小均方误差估计和控制及其在宏基因组学中的应用
  • 批准号:
    1718924
  • 财政年份:
    2017
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Standard Grant
SEEDS: Structural Error Estimation in Dynamic System Models
SEEDS:动态系统模型中的结构误差估计
  • 批准号:
    354645666
  • 财政年份:
    2017
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Research Grants
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
  • 批准号:
    RGPIN-2014-04811
  • 财政年份:
    2017
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical modelling, error estimation and applications
数值建模、误差估计和应用
  • 批准号:
    RGPIN-2014-04811
  • 财政年份:
    2016
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Discovery Grants Program - Individual
A Posteriori Error Estimation through Duality and Some Other Topics
通过对偶性和其他一些主题进行后验误差估计
  • 批准号:
    1522707
  • 财政年份:
    2015
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了