Uniqueness theorems and analysis of classical density functional theory in nonequilibrium random geometries

非平衡随机几何中经典密度泛函理论的唯一性定理与分析

基本信息

项目摘要

Describing the time evolution of various types of classical models for colloidal fluids by methods of statistical mechanics has become an important research area in physics over the last decades. This requires appropriate theories which are predictive, accurate and also numerically realizable. A promising option is classical dynamical density functional theory (DDFT), which, however, faces the challenge of being based on a sometimes uncontrolled approximation. Thus a basic understanding of DDFT from a rigorous mathematical point of view, which also explores the relation to recently proposed improvements of the theory, is of high importance. The aim of this research project is to continue our work in the first funding period of the SPP 2265 and elucidate the mathematical background of DDFT and related approaches. We shall pursue further our successful collaborations with other members of the SPP 2265. Our project in the second funding period of the SPP 2265 evolves around three pillars. (I) Development, improvement and application of approximate DDFT models for fluids under random external influences, including activity, bacterial growth, odd diffusive systems and random porous media. (II) Proofs of rigorous uniqueness theorems out of equilibrium. The corresponding work packages shall not only account for additional random one-body fields, such as a position-dependent active velocity, but also a time-dependent density-potential mapping on the two-body level. (III) Mathematical assessment of ingredients or results of DDFT. This point involves a rigorous analysis of a class of free energy functionals, which enters in many DDFT approaches and also the equilibrium limit, as well as, addressing the rising concept of hyperuniformity from a DDFT perspective.
用统计力学的方法来描述胶体流体的各种经典模型的时间演化,已成为近几十年来物理学的一个重要研究领域。这就需要适当的理论,这些理论是预测性的,准确的,也是数字上可实现的。一个有前途的选择是经典的动力学密度泛函理论(DDFT),然而,它面临的挑战是基于有时不受控制的近似。因此,从严格的数学角度对DDFT有一个基本的理解,这也是对最近提出的理论改进的一个探索,这是非常重要的。本研究项目的目的是继续我们在SPP 2265的第一个资助期的工作,并阐明DDFT和相关方法的数学背景。我们将继续与SPP 2265的其他成员进行成功的合作。我们在SPP 2265第二个资助期的项目围绕三个支柱发展。(I)发展、改进和应用DDFT近似模型,用于随机外部影响下的流体,包括活性、细菌生长、奇扩散系统和随机多孔介质。(II)平衡态外严格唯一性定理的证明。相应的工作包不仅要考虑额外的随机单体场,如位置相关的主动速度,而且还要考虑两体水平上的时间相关的密度-势映射。(III)DDFT成分或结果的数学评估。这一点涉及到一类自由能泛函,进入许多DDFT方法和平衡极限,以及,解决从DDFT的角度来看,超均匀性上升的概念进行了严格的分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hartmut Löwen其他文献

Professor Dr. Hartmut Löwen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hartmut Löwen', 18)}}的其他基金

Controlling crystallization of responsive microgel particles via cyclic stimuli
通过循环刺激控制响应性微凝胶颗粒的结晶
  • 批准号:
    389865760
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Positionally ordered liquid crystals on curved manifolds
弯曲流形上的位置有序液晶
  • 批准号:
    280671903
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Understanding the collective behavior of microswimmers within microscopic statistical theory.
在微观统计理论中理解微型游泳者的集体行为。
  • 批准号:
    253407666
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Modeling and theoretical description of magnetic hybrid materials - bridging from meso- to macro-scales
磁性杂化材料的建模和理论描述 - 从介观尺度到宏观尺度的桥梁
  • 批准号:
    237783497
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Density functional theory of heterogeneous nucleation and microstructure formation
异相成核和微观结构形成的密度泛函理论
  • 批准号:
    51340282
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Polyelectrolyte Conformations and Phase Transitions: Scattering, Imaging and Simulation Studies
聚电解质构象和相变:散射、成像和模拟研究
  • 批准号:
    5448308
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Proteine: von der effektiven Wechselwirkung zur Kristallisation
蛋白质:从有效相互作用到结晶
  • 批准号:
    5339226
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Struktur von Polyelektrolyt-Tensid-Modell-Komplexen: Experimente und theoretische Beschreibung
聚电解质-表面活性剂模型复合物的结构:实验和理论描述
  • 批准号:
    5244810
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theorie der Wechselwirkung, Erkennung und Anordnung biologischer Helizes
生物螺旋相互作用、识别和组装理论
  • 批准号:
    5174825
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Benetzung von strukturierten Wänden durch kristalline Phasen
通过结晶相润湿结构化墙壁
  • 批准号:
    5103168
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
  • 批准号:
    23K12978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction and stability analysis of new black hole solutions predicted by topological censorship theorems
拓扑审查定理预测的新黑洞解的构造及稳定性分析
  • 批准号:
    21K03560
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Index theorems in scattering theory: beyond a finite number of bound states
散射理论中的指数定理:超越有限数量的束缚态
  • 批准号:
    18K03328
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantitative analysis of existential theorems of reduction systems
约简系统存在定理的定量分析
  • 批准号:
    17K05343
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
  • 批准号:
    1565354
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Probing crystal defects with scattering theory and non-commutative topology
用散射理论和非交换拓扑探测晶体缺陷
  • 批准号:
    26707005
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
ATD Collaborative Research: New theorems and algorithms for comprehensive analysis of metagenomic data via statistical phylogenetics
ATD 协作研究:通过统计系统发育学综合分析宏基因组数据的新定理和算法
  • 批准号:
    1341325
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ATD Collaborative Research: New theorems and algorithms for comprehensive analysis of metagenomic data via statistical phylogenetics
ATD 协作研究:通过统计系统发育学综合分析宏基因组数据的新定理和算法
  • 批准号:
    1223006
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ATD Collaborative Research: New theorems and algorithms for comprehensive analysis of metagenomic data via statistical phylogenetics
ATD 协作研究:通过统计系统发育学综合分析宏基因组数据的新定理和算法
  • 批准号:
    1223057
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了