Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
基本信息
- 批准号:1565354
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the mathematics of several questions of geometric and physical interest having to do with the shapes taken on by systems in nature. The mathematical models under study are related to the physical description of interface formation and the shapes of surfaces, such as liquid droplets on substrates and in containers. Much of the work is centered on the stability of solutions to the equations that model geometric properties of such systems. The project aims to further develop the mathematical analysis underlying phenomena governed by surface tension as well as other important systems.The variational problems under study concern constant mean curvature surfaces, prescribed curvature equations, curvature flows, and isoperimetric comparison theorems. A main goal of the project is obtaining a sharp quantitative description of surfaces with almost constant mean curvature, which would lead to new results of importance in capillarity theory. Other goals of the project are developing a capillarity theory based on nonlocal surface energies, and addressing in quantitative form various rigidity theorems involving intrinsic or extrinsic curvatures of hypersurfaces. In the latter direction the program will address the quantitative analysis of prescribed scalar curvature equations, of the Pogorelov theorem on surfaces with vanishing Gauss curvature, and of the Levy-Gromov isoperimetric comparison theorem. Considerable effort will be devoted to the training of students through involvement in research on the calculus of variations, partial differential equations, geometric measure theory, and mass transportation theory.
这个研究项目涉及几何和物理兴趣的几个问题的数学,这些问题与自然界中系统所呈现的形状有关。正在研究的数学模型与界面形成和表面形状的物理描述有关,例如基板上和容器中的液滴。大部分的工作集中在稳定性的解决方案的方程模型的几何性质,这样的系统。 该项目的目的是进一步发展数学分析的基础上的现象所支配的表面张力以及其他重要的系统。变分问题的研究涉及常平均曲率曲面,规定的曲率方程,曲率流,和等周比较定理。该项目的一个主要目标是获得一个尖锐的定量描述的表面几乎恒定的平均曲率,这将导致新的结果的重要性毛细理论。该项目的其他目标是发展一个基于非局部表面能的毛细作用理论,并以定量的形式解决涉及超曲面的内在或外在曲率的各种刚性定理。在后一个方向的计划将解决定量分析规定的标量曲率方程,Pogorelov定理的表面消失高斯曲率,和Levy-Gromov等周比较定理。相当大的努力将致力于通过对变分法,偏微分方程,几何测量理论和质量运输理论的研究参与学生的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Maggi其他文献
Isoperimetric Residues and a Mesoscale Flatness Criterion for Hypersurfaces with Bounded Mean Curvature
- DOI:
10.1007/s00205-024-02039-y - 发表时间:
2024-09-19 - 期刊:
- 影响因子:2.400
- 作者:
Francesco Maggi;Michael Novack - 通讯作者:
Michael Novack
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Augello;V. Santinelli;G. Vicedomini;P. Mazzone;S. Gulletta;Francesco Maggi;Y. Mika;G. Chierchia;C. Pappone - 通讯作者:
C. Pappone
A remark on Serrin’s Theorem
- DOI:
10.1007/s00030-006-4018-8 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Nicola Fusco;Michele Gori;Francesco Maggi - 通讯作者:
Francesco Maggi
A New Approach to Counterexamples to L1 Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions
- DOI:
10.1007/s00205-004-0350-5 - 发表时间:
2004-12-03 - 期刊:
- 影响因子:2.400
- 作者:
Sergio Conti;Daniel Faraco;Francesco Maggi - 通讯作者:
Francesco Maggi
Rigidity and large volume residues in exterior isoperimetry for convex sets
凸集外等周问题中的刚性和大体积残差
- DOI:
10.1016/j.aim.2024.109833 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Nicola Fusco;Francesco Maggi;Massimiliano Morini;Michael Novack - 通讯作者:
Michael Novack
Francesco Maggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Maggi', 18)}}的其他基金
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
- 批准号:
2247544 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
- 批准号:
2000034 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854344 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
- 批准号:
1840314 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361122 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Regularity and stability results in variational problems
规律性和稳定性导致变分问题
- 批准号:
1262411 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant