Mean Pythagorean Relations in the Estimation of the Multi-dimensional Parameter
多维参数估计中的平均毕达哥拉斯关系
基本信息
- 批准号:06680297
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Kullback-Leibler loss is now important even in information theory and quantum mechanics. The aim of the present research is to develop new methods through our deeper understanding of the structure of the apace of probability distributions. The targeted areas are : 1) The conditional likelihood method and the marginal likelihood method, 2) The empirical Bays method, and 3) The estimating equation method.The finding obtained as the present research project are summerized as follow :1) Parameter orthogonality is explored through the notion of duality. This study brings us to deeper understanding of the foundation of GLM.It provides us also with a new finding of the LRT.Recent discussions with Dr.Kawanabe (Tokyo U.) suggest a close relation between parameter orthogonality and the theory of estimating functions.2) There is a severe gap between the paramentric and the nonparamentric regression methods. However, it is believed that various common properties still hold. This conjecture is exploited affirmatively through simulation studies. Thus the next step will be to explore theoretical backgrounds of the findings.3) A substantial defect of the MLE is expected as its potential overfitting. This is examined in the factor analysis, which was conducted with Prof.Ihara (Osaka E.I.U.).Foundamental researches pertain to the asymptotic second order structure of the MLE through the Kullback-Leibler loss and also to orthognal parameter coordinats. Researches on these subjects look sparse in spite of their importance. Professors Eguchi (ISM) and Yamamoto (Okayama U.S.) participated agressively to these joint researches.
Kullback-Leibler损失现在甚至在信息论和量子力学中也很重要。本研究的目的是通过我们对概率分布空间结构的更深入理解来发展新的方法。目标领域是:1)条件似然法和边际似然法,2)经验贝叶斯法,3)估计方程法,本课题的主要研究成果如下:1)利用对偶概念探讨了参数的正交性。这项研究使我们对GLM的基础有了更深的理解,也为我们提供了关于LRT的新发现。2)参数回归方法与非参数回归方法之间存在着严重的差距。然而,人们相信,各种共同的属性仍然存在。这一猜想是利用肯定通过模拟研究。因此,下一步将是探索发现的理论背景。3)MLE的一个实质性缺陷是其潜在的过拟合。在与伊原教授(大坂经济大学)进行的因素分析中对此进行了研究。基础研究涉及到渐近二阶结构的MLE通过Kullback-Leibler损失和正交参数坐标。尽管这些问题很重要,但对它们的研究却很少。江口教授(ISM)和山本教授(冈山美国)积极参与这些联合研究。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Yanagimoto: "The mean Pythagorean relation in the nonparametric regression method" J. Statist. Research. 28. 177-187 (1994)
T. Yanagimoto:“非参数回归方法中的平均毕达哥拉斯关系”J. Statist。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yamamoto,E & Yanagimoto,T.: "A modified likelihood ratic test for the mean direction in the von Mises distribution" Covmmunication In Statistics-Theny and Method. 24. 2659-2678 (1995)
山本E
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Yanagimoto: "The Kullback-Leibler risk of the Stein estimator and the conditional MLE" Ann. Inst. Statist. Math.46. 29-41 (1994)
T. Yanagimoto:“Stein 估计量和条件 MLE 的 Kullback-Leibler 风险”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
柳本武美: "推定方程式に基づく推定" 応用統計学. 24. 1-12 (1996)
Takemi Yanagimoto:“基于估计方程的估计”应用统计学 24. 1-12 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Yanagimoto: "Discrete first passage time distribution for describinginequality among individuals." In Lifetime Data : Models in Reliability and Survival Analysis (eds.N.P.Jewel et al.), Kluwer Academic. 377-383 (1996)
T.Yanagimoto:“离散首次通过时间分布用于描述个体之间的不平等。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANAGIMOTO Takemi其他文献
YANAGIMOTO Takemi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANAGIMOTO Takemi', 18)}}的其他基金
Reconstructing the empirical Bayes method through the use of the posterior density
通过使用后验密度重建经验贝叶斯方法
- 批准号:
23500357 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expanding the regression analysis through the innovative applications of Bayesian methods
通过贝叶斯方法的创新应用扩展回归分析
- 批准号:
20500259 - 财政年份:2008
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Attempt to Developing the Hybrid Bayesian Conjugate Analysis
开发混合贝叶斯共轭分析的尝试
- 批准号:
18500220 - 财政年份:2006
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing techniques for constructing and maintaining an item pool
开发构建和维护项目池的技术
- 批准号:
15300290 - 财政年份:2003
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inference for the exponential family having a high-dimensional parameter
具有高维参数的指数族的推断
- 批准号:
13680377 - 财政年份:2001
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructing estimators based on orthogonal components in a parametric model
基于参数模型中的正交分量构造估计器
- 批准号:
10680325 - 财政年份:1998
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Separate inference induced from the structure of a statistical model
从统计模型的结构中导出的单独推论
- 批准号:
08680340 - 财政年份:1996
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)