Inference for the exponential family having a high-dimensional parameter
具有高维参数的指数族的推断
基本信息
- 批准号:13680377
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The inferential procedure of a high-dimensional parameter is one of the most appealing research subjects in the theoretical and the practical points of view. The present research focuses on the empirical Bayes method in terms of a natural conjugate prior and the application of the theory of estimating function. A special emphasis is placed on the Pythagorean relationship observed in the parameter space of the exponential family.A significant result of the present research project is preformed by extending a natural conjugate prior. We first note that a natural conjugate prior is expressed in terms of the Kullback-Leibler separator. Thus a straightforward extension is possible by replacing the separator by its dual form. Such a prior is called a mean conjugate prior. An attractive property of this prior is that the sampling density and a prior density are common in many familiar cases. Other possible families of prior distribution are also investigated. Another result concerns the relation of an electrostatic quantity, specifically Coulomb potential, with the Pythagorean relationship. More precisely, the maximum likelihood estimator of a multi-dimensional location parameter is improved by shifting it at the step size given by the gradient of the logarithmic Coulomb potential. In light of familiarity of the potential, this result may suggest that further strong relations between the physical and the information sciences can be pursued in the future.At the latest stage the derivation of the link function from the assumption of the strong unbiasedness of the score function was successfully conducted. The derivation shows a special role of the logarithmic link function in the generalized linear model. It is expected that the result will be fully used in studying the generalized linear model with many strata.
高维参数的推导过程是理论界和实践界最感兴趣的研究课题之一。本文主要研究自然共轭先验下的经验贝叶斯方法和估计函数理论的应用。重点讨论了指数族参数空间中的勾股关系,推广了自然共轭先验,得到了一个有意义的结果.我们首先注意到,自然共轭先验是用Kullback-Leibler分离器表示的。因此,通过用其双重形式替换分隔器,可以进行直接的扩展。这种先验称为平均共轭先验。这种先验的一个有吸引力的性质是,在许多熟悉的情况下,采样密度和先验密度是共同的。其他可能的家庭的先验分布也进行了研究。另一个结果涉及静电量(特别是库仑势)与毕达哥拉斯关系的关系。更准确地说,多维位置参数的最大似然估计是通过将其移动到由对数库仑势的梯度给出的步长来改进的。根据熟悉的潜力,这一结果可能表明,进一步强的物理和信息科学之间的关系,可以在future. In的最新阶段,推导出的链接函数从假设的得分函数的强无偏性成功地进行。推导表明了对数连接函数在广义线性模型中的特殊作用。该结果可望在多地层广义线性模型的研究中得到充分的应用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yanagimoto, T. and Ohnishi, T.: "Simultaneous estimation of a mean vector based on mean conjugate priors."Measurement and Multivariate Analysis, Nishisato, S., Baba, Y., Bozdgan, H. and Kanefuji, K. (eds.) Shpringer-Verlag Tokyo, Tokyo. 191-196 (2002)
Yanagimoto, T. 和 Ohnishi, T.:“基于平均共轭先验的平均向量的同时估计。”测量和多元分析,Nishisato, S.、Baba, Y.、Bozdgan, H. 和 Kanefuji, K.(编辑)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yanagimoto, T., Ohnishi, T.: "Simultaneous estimation of a mean vector based on mean conjugate priors"Measurement and Multivariate Analysis. 191-196 (2002)
Yanagimoto, T.、Ohnishi, T.:“基于平均共轭先验的平均向量的同时估计”测量和多变量分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ohnishi, T., Yanagimoto, T.: "Electrostatic views of Stein-type estimation of location vectors"Journal of the Japan Statistical Society. (印刷中).
Ohnishi, T.,Yanagimoto, T.:“位置向量的斯坦因型估计的静电视图”日本统计学会杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yanagimoto, T.: "Views of Statistical Inference Induced from Modern Positivism"Jouranal of the Japan Statistical Society, Japanese Issue. 32(3). 291-302 (2002)
Yanagimoto, T.:“现代实证主义引发的统计推断的观点”日本统计学会杂志,日本号。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YANAGIMOTO Takemi其他文献
YANAGIMOTO Takemi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YANAGIMOTO Takemi', 18)}}的其他基金
Reconstructing the empirical Bayes method through the use of the posterior density
通过使用后验密度重建经验贝叶斯方法
- 批准号:
23500357 - 财政年份:2011
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expanding the regression analysis through the innovative applications of Bayesian methods
通过贝叶斯方法的创新应用扩展回归分析
- 批准号:
20500259 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Attempt to Developing the Hybrid Bayesian Conjugate Analysis
开发混合贝叶斯共轭分析的尝试
- 批准号:
18500220 - 财政年份:2006
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing techniques for constructing and maintaining an item pool
开发构建和维护项目池的技术
- 批准号:
15300290 - 财政年份:2003
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Constructing estimators based on orthogonal components in a parametric model
基于参数模型中的正交分量构造估计器
- 批准号:
10680325 - 财政年份:1998
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Separate inference induced from the structure of a statistical model
从统计模型的结构中导出的单独推论
- 批准号:
08680340 - 财政年份:1996
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean Pythagorean Relations in the Estimation of the Multi-dimensional Parameter
多维参数估计中的平均毕达哥拉斯关系
- 批准号:
06680297 - 财政年份:1994
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Stochastic geometry and dynamics of infinite particle systems interacting with two-dimensional Coulomb potential
与二维库仑势相互作用的无限粒子系统的随机几何和动力学
- 批准号:
24244010 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Visualization of Coulomb potential by electron crystallography
通过电子晶体学可视化库仑势
- 批准号:
24657111 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research