フラクタル上の非等方拡散の均質化

分形各向异性扩散的均匀化

基本信息

  • 批准号:
    07640279
  • 负责人:
  • 金额:
    $ 0.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

本研究の目的は,フラクタル,特にinfinitely ramified fractal,の上の非等方拡散の均質化,あるいは等方性の回復,を調べることであった.この問題は,フラクタル上の拡散の一意性やhomogenizationの問題の解決に必要な要素として知られる重要な問題であり,finitely ramified fractalに関しては著者を含めて多くの結果が得られているのに対して,infinitely ramified fractalでは全く手がつけられていなかった.Infinitely ramified fractalのもっともよく知られた例であるpre-Sierpinski carpetの上の有効抵抗の非等方性の漸近的な振る舞いに関して,本研究によって次の成果を得た.1.Finitely ramified fractalsの場合と同様,等方性の完全な回復を予想するが,現時点では困難な問題である.パラメータについて一様な漸近的評価(弱い意味の等方性の回復)を目標とするべきであることを決定した.2.フラクタルに特徴的な自己相似性を生かして問題を再帰不等式に帰着させるのが自然な発想である.既に等方的有効抵抗についてはBarlow-Bassの再帰不等式が知られていた.この再帰不等式も非等方的な場合に拡張できると考えられるが,弱い意味の等方性の回復を証明するためには必要ないであろうという結論を得た.むしろ,非等方性の強い,Barlow-Bass型不等式が悪い評価になっているパラメータ領域で有効な,別の再帰不等式群が重要であると考える。このような不等式は有効抵抗を変分問題によって表現したときの試行関数を再帰的に構成することで得られる.技術的には,変分問題のdmainに入るような試行関数を構成することに問題が帰着されることが分かった.
In this study, the purpose of this study is to improve the quality of the non-isotropic, non-isotropic, isotropic and isotropic properties of the infinitely ramified fractal. If you have a problem, please do not know that it is necessary to solve a homogenization problem. You need to know that you are aware of an important problem. The author of a finitely ramified fractal certificate contains multiple questions. The results show that the author has obtained a copy of the data. Infinitely ramified fractal has a full range of hand-held devices. Infinitely ramified fractal is aware that there is an example of resistance to non-isotropic dance in pre-Sierpinski carpet. The results of this study have been successful. The results of 1.Finitely ramified fractals are the same, and the same is true of isotropy. At some point in time, the dilemma is difficult. I don't know. I don't know. The problem of self-similarity and the problem of self-similarity is different from the problem of inequality. For both sides, there are "resistance", "resistance", "Barlow-Bass" and "inequality". If the inequality is not the same as that of the equal party, the weak inequality means that it is necessary to obtain the results of the analysis. The inequality of the Barlow- Bass type is strong, the inequality of the Bass type is strong, and the inequality group is important. In terms of inequality, there is a problem of resistance to the number of rows in which the number of lines is increased. In terms of technical problems, the number of technical problems that dmain has entered into the market will lead to a significant increase in the number of problems.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. T. Barlow: "Restoration of isotropy on fractals" Phusical Reveiw Letters. 75. 3042-3045 (1995)
M. T. Barlow:“分形各向同性的恢复”物理评论快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Hattori: "Transition density of diffusion on the Sierpinski gasket and extension of Flory's formula" Phusical Reveiw E. 52. 1202-1205 (1995)
T. Hattori:“Sierpinski 垫片上扩散的过渡密度和 Flory 公式的扩展”Phusical Reveiw E. 52. 1202-1205 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

服部 哲弥其他文献

On the entropy of α-continued fraction transformations
关于 α-连分式变换的熵
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsujii;M.;Hitoshi Nakada;谷野哲三;服部 哲弥;夏井利恵
  • 通讯作者:
    夏井利恵
Scaling limit of successive approximations for w' =-w^2
w =-w^2 的逐次逼近的缩放限制
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tsujii;M.;Hitoshi Nakada;谷野哲三;服部 哲弥
  • 通讯作者:
    服部 哲弥
Level statistics for one-dimensional Schroedinger operators and Gaussian beta ensemble
一维薛定谔算子和高斯贝塔系综的水平统计
  • DOI:
    10.1007/s10955-014-0987-x
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Takao Kato and Gerriet Martens;平田賢太郎;服部 哲弥;Fumihiko Nakano;Takao Kato and Gerriet Martens;服部 哲弥;平田賢太郎;平田賢太郎;服部 哲弥;Takao Kato;F. Nakano and T. Sadahiro;服部 哲弥;服部 哲弥;Fumihiko NAKANO
  • 通讯作者:
    Fumihiko NAKANO
非局所項を持つ$1$階準線形偏微分方程式の解の独立増分でない点過程による表現
通过非独立增量的点过程表示具有非局部项的 1$ 级线性偏微分方程的解
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takao Kato and Gerriet Martens;平田賢太郎;服部 哲弥;Fumihiko Nakano;Takao Kato and Gerriet Martens;服部 哲弥;平田賢太郎;平田賢太郎;服部 哲弥;Takao Kato;F. Nakano and T. Sadahiro;服部 哲弥;服部 哲弥
  • 通讯作者:
    服部 哲弥
確率変数の収束と大数の完全法則
随机变量的收敛性和完美的大数定律
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kanehisa Takasaki;服部 哲弥
  • 通讯作者:
    服部 哲弥

服部 哲弥的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('服部 哲弥', 18)}}的其他基金

Mathematical analysis of submodular set functions and its application to stochastic ranking model
子模集合函数的数学分析及其在随机排序模型中的应用
  • 批准号:
    22K03358
  • 财政年份:
    2022
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
フラクタルにおける等方性の漸近的回復
分形各向同性的渐近恢复
  • 批准号:
    08640252
  • 财政年份:
    1996
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
フラクタル上の自己回避確率過程
分形上的自回避随机过程
  • 批准号:
    06740142
  • 财政年份:
    1994
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
フラクタル上の確率過程
分形的随机过程
  • 批准号:
    05740121
  • 财政年份:
    1993
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

フラクタル構造を応用した超軽量な衝撃吸収メタマテリアルの創製
利用分形结构创建超轻减震超材料
  • 批准号:
    24K07220
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ランダム力学系・非自励力学系、写像半群の力学系とフラクタル幾何学の研究
随机动力系统、非自激动力系统、映射半群动力系统、分形几何研究
  • 批准号:
    24K00526
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
スケーリング理論によるフラクタル性を有する複雑ネットワークの理解
使用尺度理论理解具有分形特性的复杂网络
  • 批准号:
    24K06896
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新奇量子凝縮相の探索的研究と特性解明:フラクタル超伝導とエキシトン絶縁体への挑戦
新型量子凝聚相的探索性研究和表征:对分形超导和激子绝缘体的挑战
  • 批准号:
    23K20823
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
フラクタルおよびその上の確率過程における解析学・幾何学とその相互関係の研究
分形及其随机过程中的分析、几何及其相互关系的研究
  • 批准号:
    23K22399
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PF-ILDのフラクタル解析とCNN学習モデルを用いた画像診断研究
基于PF-ILD分形分析和CNN学习模型的图像诊断研究
  • 批准号:
    24K10916
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ナノシートのフラクタル次元制御による活性炭類似構造の創製
通过纳米片的分形维数控制创建活性炭状结构
  • 批准号:
    23K23432
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
拡張型心筋症の心筋組織性状および左室内腔形態のフラクタル解析に関する研究
扩张型心肌病心肌组织特性及左心室腔形态的分形分析研究
  • 批准号:
    24K10908
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
フラクタル上のエネルギー測度に関連する幾何・解析
与分形能量测量相关的几何和分析
  • 批准号:
    24KJ0022
  • 财政年份:
    2024
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
可解なフラクトン系によるホログラフィーの解明
使用可分辨分形系统阐明全息术
  • 批准号:
    22KJ1708
  • 财政年份:
    2023
  • 资助金额:
    $ 0.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了