Study of fundamental limits of solid-state nuclear spin gyroscopy based on NV centers in diamond
基于金刚石NV中心的固态核自旋陀螺基本极限研究
基本信息
- 批准号:445397527
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The precise detection of gyration is a challenging problem in basic science and of significant relevance for applications. A variety of methods based on classical angular momentum conservation, quantum standards as well as the Sagnac effect have been developed. Recently the demand for precision and compact (!) inertial navigation is increasing, caused by the surge of activities on autonomous technical systems. Among other technologies the observation of a nuclear spin ensemble precession is a promising method to measure rotation precisely. State of the art methods are based on phase-locked precession of ensembles of hyperpolarized nuclear spins in hot atomic alkali metal vapours, which however is hard to integrate. Here, we aim to realize such a method in a solid with the prospect to develop compact precision gyroscopes. Our approach is based on nitrogen-vacancy (NV) centers in diamond, shown to have unparalleled optical and spin properties under ambient conditions. We will utilize an ensemble of nuclear spins as reference for gyration which allows miniaturizing the sensing element and make it compatible with chip technology. Taking into account well-studied parameters of nuclear spins in the diamond material, the estimated theoretical limit of rotation sensor is on the order of millidegree per hour which puts this technology on par with fiber-based ring-laser optical gyroscopes with the advantage of a significantly smaller size. In comparison to the micro electromechanical (MEMS) technology, the nuclear spin gyroscope will show significantly better bias stability characteristics. In the course of the project, the diamond material will be optimized towards the usage of nuclear spin ensembles. The project will include research on developing novel control protocols for rotational sensing, and its fundamental precision limits. The latter part of the project is devoted to studies of minimizing and compensating the drifts and systematic effects in a possible optimal sensing protocol through utilizing novel control methods and quantum control techniques such as error correction and coherent feedback. The project will be pursued in a collaboration of two laboratories: Prof. Wrachtrup from the German side and Prof. Akimov from Russian side. The German side has a broad and longstanding track record in developing sensing protocols and advancing diamond materials, while the Russian side already has ongoing research work on proof of principles gyroscopic measurements with NV in diamond. By joining forces, this collaboration has the potential to enable rotational sensing with NV centers by exploring novel diamond materials and sensing protocols.
回转的精确检测是基础科学中的一个挑战性问题,具有重要的应用价值。基于经典角动量守恒、量子标准以及Sagnac效应的各种方法已经被开发出来。最近,对精密和紧凑的需求(!)由于自主技术系统活动的激增,惯性导航正在增加。在其他技术中,核自旋系综进动的观测是精确测量旋转的一种有前途的方法。现有技术的方法是基于热原子碱金属蒸气中超极化核自旋系综的锁相进动,然而这很难积分。在这里,我们的目标是实现这种方法在一个坚实的前景开发紧凑的精密陀螺仪。我们的方法是基于金刚石中的氮空位(NV)中心,在环境条件下具有无与伦比的光学和自旋特性。我们将利用核自旋的系综作为旋转的参考,这允许将传感元件封装并使其与芯片技术兼容。考虑到金刚石材料中核自旋的充分研究参数,旋转传感器的估计理论极限为每小时毫度,这使得该技术与基于光纤的环形激光光学陀螺仪相当,具有明显更小的尺寸。与微机电(MEMS)技术相比,核自旋陀螺仪将显示出明显更好的偏置稳定性特性。在该项目的过程中,金刚石材料将朝着核自旋系综的使用进行优化。该项目将包括研究开发用于旋转传感的新型控制协议及其基本精度限制。该项目的后半部分致力于研究通过利用新的控制方法和量子控制技术,如纠错和相干反馈,最大限度地减少和补偿可能的最佳传感协议中的漂移和系统效应。该项目将在两个实验室的合作下进行:来自德国方面的Akimov教授和来自俄罗斯方面的Akimov教授。德方在开发传感协议和推进金刚石材料方面有着广泛而长期的记录,而俄方已经在金刚石中NV的陀螺仪测量原理证明方面进行了持续的研究工作。通过联手,这种合作有可能通过探索新型金刚石材料和传感协议来实现NV中心的旋转传感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jörg Wrachtrup其他文献
Professor Dr. Jörg Wrachtrup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jörg Wrachtrup', 18)}}的其他基金
Nearfield/dipolar interaction of defects, SET charge fluctuation measurements
缺陷的近场/偶极相互作用,SET 电荷波动测量
- 批准号:
193756858 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
Koordination der Forschungsgruppe 1493
第1493章 研究小组的协调
- 批准号:
193768979 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
Development of multi-qubit spintronics device for quantum communication and computing by single NV centers in diamond
金刚石单NV中心开发用于量子通信和计算的多量子位自旋电子器件
- 批准号:
61150930 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Hochempfindliches bildgebendes Magnetometer mit Sub-Nanometer Auflösung
具有亚纳米分辨率的高灵敏度成像磁力计
- 批准号:
22954426 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Energierelaxation eines bakteriellen LH1 Komplexes in definierten Komplex-Strukturen und Schichten
细菌 LH1 复合物在确定的复合结构和层中的能量弛豫
- 批准号:
5418700 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Ein optischer Schalter und Speicher aus einem einzelnen Defektzentrum - Physikalische Grundlagen und materialspezifische Aspekte -
来自单一缺陷中心的光学开关和存储器 - 物理原理和材料特定方面 -
- 批准号:
5282802 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Quantum computation with single defect centers
单缺陷中心的量子计算
- 批准号:
5183188 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Priority Programmes
Spin-probe-enabled sensing of fluids in confined geometries and interfaces
利用自旋探针对受限几何形状和界面中的流体进行传感
- 批准号:
509457256 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits
多维和压缩超分辨率:理论、计算和基本限制
- 批准号:
2309602 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
- 批准号:
2317194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231706 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231707 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




