Spin current transport experiments on 3-dimensional Y3Fe5O12 surfaces utilizing atomic layer deposition

利用原子层沉积在 3 维 Y3Fe5O12 表面上进行自旋电流输运实验

基本信息

项目摘要

Yttrium iron garnet (Y3Fe5O12, YIG) is an electrically insulating ferrimagnet with an ordering temperature of 560 K. Due to the extremely low magnetic damping (Gilbert damping parameters down to a few 10 ppm) and the small coercive fields, YIG and related magnetic garnets are now used in various high-frequency applications. In addition, these materials are very interesting because of their outstanding properties for basic research in the field of magnonics and spin electronics. However, mostly YIG single crystals and planar thin films are currently used. The fabrication and properties of more complex, 3-dimensional (e.g. curved or tube-like) thin-film structures of YIG or YIG-based heterostructures have not been studied experimentally, although very interesting properties have been predicted.In the framework of this project, we explore this interesting field by establishing the synthesis of YIG layers by means of atomic layer deposition (ALD). ALD is based on successive, self-limited surface reactions and, thus, allows the conformal coating of arbitrarily shaped surfaces. While the ALD of (binary) oxide thin films is already routinely used in the semiconductor industry, two ALD cycles must be combined to produce ternary compounds such as Y3Fe5O12. Therefore, the successful atomic layer deposition of YIG–or more generally of garnet thin films–is also an interesting technological challenge. By combining established ALD processes, we want to produce nano-laminates in which chemically stable binary constituents (Y2O3 and Fe2O3 for YIG) are stacked in a thin-film heterostructure. After a heat treatment, the nano-laminates are converted into the desired material. First, we will establish the nano-laminate process for Y3Al5O12 (YAG), since Al2O3 ALD is particularly robust; it is considered the ALD reference process. Afterwards, we will transition from YAG to YIG. The magnetic properties of the layers are quantified by magnetometry and magnetic resonance investigations. In combination with the ALD process for metallic Pt, YIG/Pt multilayers can be deposited on arbitrarily shaped surfaces. Such heterostructures are very interesting for experiments with pure spin currents. Here, we want to investigate the influence of local curvature or topology on spin transport by means of spin-Hall magnetoresistance experiments.In summary, the proposed atomic layer deposition of yttrium iron garnet provides the base for the production of modern, three-dimensional nanostructures from this special material and, thus, enables a large number of future (spin transport) experiments.
钇铁石榴石(Y3 Fe 5 O 12,YIG)是一种电绝缘的亚铁磁体,有序化温度为560 K。由于极低的磁阻尼(吉尔伯特阻尼参数低至几个10 ppm)和小的矫顽场,YIG和相关的磁性石榴石现在用于各种高频应用。此外,这些材料是非常有趣的,因为它们在磁振子和自旋电子学领域的基础研究的杰出性能。然而,目前主要使用YIG单晶和平面薄膜。YIG或基于YIG的异质结构的更复杂的三维(例如弯曲或管状)薄膜结构的制造和性质尚未进行实验研究,尽管已经预测了非常有趣的性质。在本项目的框架内,我们通过建立通过原子层沉积(ALD)合成YIG层来探索这个有趣的领域。ALD基于连续的自限表面反应,因此允许任意形状表面的保形涂层。虽然(二元)氧化物薄膜的ALD已经常规地用于半导体工业中,但是必须组合两个ALD循环以产生三元化合物,例如Y3 Fe 5 O 12。因此,钇铁石榴石薄膜的成功原子层沉积也是一个有趣的技术挑战。通过结合已建立的ALD工艺,我们希望生产纳米层压材料,其中化学稳定的二元组分(Y2 O3和Fe 2 O3用于YIG)堆叠在薄膜异质结构中。在热处理之后,纳米层压材料被转化成所需的材料。首先,我们将建立Y3 Al 5 O 12(YAG)的纳米层压工艺,因为Al 2 O3 ALD特别稳健;它被认为是ALD参考工艺。之后,我们将从YAG过渡到YIG。的层的磁性能进行量化的磁力和磁共振调查。结合金属Pt的ALD工艺,YIG/Pt多层膜可以沉积在任意形状的表面上。这种异质结构对于纯自旋电流的实验是非常有趣的。在这里,我们要调查的影响,当地的曲率或拓扑结构上的自旋输运的自旋霍尔magnetoresistance experiments.In总结,所提出的原子层沉积钇铁石榴石提供了现代的基础,三维纳米结构的生产,从这种特殊的材料,因此,使大量的未来(自旋输运)的实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Sebastian Gönnenwein其他文献

Professor Dr. Sebastian Gönnenwein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Sebastian Gönnenwein', 18)}}的其他基金

Spin-dependent thermo-galvanic effects: experiment
自旋相关的热电效应:实验
  • 批准号:
    198261808
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lokale Magnettransporteigenschaften von dünnen ferromagnetischen Schichten und Mehrlagenstrukturen
薄铁磁层和多层结构的局部磁输运特性
  • 批准号:
    57198292
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Manipulation and detection of magnetic states with collinear spin-split antiferromagnets
利用共线自旋分裂反铁磁体操纵和检测磁态
  • 批准号:
    490730630
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Magneto-Thermo-Electric Effects In Antiferromagnetic Spintronics
反铁磁自旋电子学中的磁热电效应
  • 批准号:
    445976410
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

循环二氧化碳水平升高导致延迟钠电流增加的致心律失常作用及其发生机制的研究
  • 批准号:
    81170156
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
华南二叠纪凉水洋流上涌与回落过程及其生态环境响应
  • 批准号:
    40972024
  • 批准年份:
    2009
  • 资助金额:
    44.0 万元
  • 项目类别:
    面上项目

相似海外基金

Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
  • 批准号:
    BB/X002810/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
  • 批准号:
    2314465
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Control of spin current transport by using the interface
使用接口控制自旋电流传输
  • 批准号:
    17K14077
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Optical and electric-field control of pure spin current transport
纯自旋电流传输的光和电场控制
  • 批准号:
    16H02333
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Perpendicular-Current Spin-Polarized Transport Studies
垂直电流自旋极化输运研究
  • 批准号:
    0804126
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Perpendicular-Current Spin-Polarized Transport Studies
垂直电流自旋极化输运研究
  • 批准号:
    0501013
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Theory of Quantum Transport based on Spin and Orbital.
基于自旋和轨道的量子传输理论。
  • 批准号:
    16340097
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Perpendicular-Current Spin-Polarized Transport Studies at Low Temperatures
低温下垂直电流自旋极化输运研究
  • 批准号:
    0202476
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Perpendicular-Current Spin-Polarized Transport Studies at Low Temperatures
低温下垂直电流自旋极化输运研究
  • 批准号:
    9820135
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spin+Current: Angular momentum transport by magnons, spins, and orbits (B02)
自旋流:磁振子、自旋和轨道的角动量传输 (B02)
  • 批准号:
    290396061
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了