Temporal unmixing Optoacoustics – Machine learning to enable routine whole animal Optoacoustic imaging of genetically encoded photo-modulatable labels.
时间分离光声学 â 机器学习可实现基因编码光可调制标签的常规整体动物光声成像。
基本信息
- 批准号:447748737
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optoacoustic (OA) or Photoacoustic imaging is an emerging imaging modality that provides unsurpassed penetration depth at high resolution. It delivers more comprehensive time-resolved 3D in vivo images at depths far beyond the reach of optical methods. Moreover, with OA only requiring an optical excitation source and ultrasound detector, in terms of infrastructure, it is more comparable to optical microscopy than to cost intensive radiological methods. The application of OA in life sciences is new and the few existing genetically encodable labels (a prerequisite for targetable in vivo imaging) lack sufficiently high OA signal for whole animal studies. This prevents the separation from the predominant signal of blood hemoglobin in tissue. This challenge can be overcome by employing labels based on genetically encoded photochromatic proteins (hereafter called reversibly switchable OA proteins, rsOAP). These proteins’ signal can be modulated by light which allows a clean separation of modulating label signal from non-modulating background.The potential of rsOAPs for studying the dynamics of cells at the level of the whole organism has recently been demonstrated. Labeled cells were visualized in vivo at a depth of up to one centimeter and at low numbers (~500). So far, parallel visualization (multiplexing) of up to three labels is possible based on different modulation characteristics. However, those studies used dedicated high-end OA setups and showed that the interpretation of the modulation kinetics is demanding and prone to artifacts. This hampers the routine application, especially with regard to very small cell numbers deep in the tissue or entangled populations of different labels, which are typical situations for many biological studies. Recently, we showed that the interpretation of a multitude of features (e.g. signal strength, depth, kinetics, background-noise) that were analyzed via machine learning (ML) strongly improves the analysis of rsOAP-based measurements conducted with of-the-shelf instrumentation. Yet, further improvement in accuracy and sensitivity are necessary before this approach can become a routine application enabling OA whole animal imaging in the life sciences.In this project, we will address the challenges of the ML approach and optimize it with a focus on multiplexed detection of small numbers of differently labeled cells. The proposed work will help to fully enable the routine use of rsOAP imaging in OA. OA as a standard life-science imaging modality will allow its wider use and provide researchers with an indispensable tool to visualize the interactions of small cell populations in vivo in whole organisms. Moreover, multiplexing will allow interpretation of dynamic interactions of cells on the larger scale. Observations of this kind are crucial for immunology, developmental and tumor biology, allowing insights into the dynamic interplay that underlies disease mechanisms such as in cancer.
光声(OA)或光声成像是一种新兴的成像方式,提供无与伦比的穿透深度在高分辨率。它提供了更全面的时间分辨的3D体内图像,其深度远远超出了光学方法的范围。此外,由于OA仅需要光学激发源和超声检测器,就基础设施而言,它与光学显微镜相比更具有成本密集型放射学方法的可比性。OA在生命科学中的应用是新的,并且少数现有的遗传编码标记(可靶向体内成像的先决条件)缺乏足够高的OA信号用于整个动物研究。这防止了从组织中的血液血红蛋白的主要信号分离。这一挑战可以通过采用基于遗传编码的光致变色蛋白(以下称为可逆转换OA蛋白,rsOAP)的标记来克服。这些蛋白质的信号可以被光调制,这允许调制标记信号与非调制背景的干净分离。最近已经证明了rsOAPs在整个生物体水平上研究细胞动力学的潜力。标记的细胞在体内以高达1厘米的深度和低数量(~500)可视化。到目前为止,基于不同的调制特性,多达三个标签的并行可视化(复用)是可能的。然而,这些研究使用了专用的高端OA设置,并表明调制动力学的解释要求很高,容易出现伪影。这阻碍了常规应用,特别是对于组织深处非常小的细胞数量或不同标记物的缠结群体,这是许多生物学研究的典型情况。最近,我们表明,通过机器学习(ML)分析的众多特征(例如信号强度,深度,动力学,背景噪声)的解释大大改善了使用现成仪器进行的基于rsOAP的测量的分析。然而,在这种方法成为生命科学中OA整体动物成像的常规应用之前,还需要进一步提高准确性和灵敏度。在本项目中,我们将解决ML方法的挑战并对其进行优化,重点关注少量不同标记细胞的多重检测。拟议的工作将有助于充分实现rsOAP成像在OA中的常规使用。OA作为一种标准的生命科学成像模式将允许其更广泛的使用,并为研究人员提供一个不可或缺的工具,以可视化整个生物体内小细胞群的相互作用。此外,多路复用将允许在更大规模上解释细胞的动态相互作用。这种观察对于免疫学、发育和肿瘤生物学至关重要,可以深入了解疾病机制(如癌症)背后的动态相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Andre Stiel, Ph.D.其他文献
Dr. Andre Stiel, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Andre Stiel, Ph.D.', 18)}}的其他基金
Sorting Sounds - A high-throughput microfluidics screening platform for the development of genetically encoded labels for Optoacoustic imaging
Sorting Sounds - 高通量微流体筛选平台,用于开发用于光声成像的基因编码标签
- 批准号:
323341449 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Sense and switch across scales – Prototyping genetically encoded, reversibly switchable indicators for sub-diffraction microscopy and whole animal optoacoustic Ca2+ imaging (Resubmission)
跨尺度的感知和切换 â 为亚衍射显微镜和整个动物光声 Ca2 成像的基因编码、可逆切换指示器进行原型设计(重新提交)
- 批准号:
448529311 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Single-sample unmixing with machine learning: a rock magnetic frontier
通过机器学习进行单样本分离:岩石磁性前沿
- 批准号:
DP200100765 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
The mechanics of turbulent unmixing in volcanic jets
火山喷流中的湍流分解机制
- 批准号:
527386-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Determining the Source Locations of Martian Meteorites: Non-Linear Unmixing Models in the VNIR
确定火星陨石的来源位置:VNIR 中的非线性分解模型
- 批准号:
ST/R002827/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Learning and Recovery Algorithms for Multi-Sensor Data Fusion and Spectral Unmixing in Earth Observation
地球观测中多传感器数据融合和光谱分解的学习和恢复算法
- 批准号:
273264444 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Unmixing of Phosphorus-Bearing Melts on Earth and Mars
地球和火星上含磷熔体的分解
- 批准号:
278990208 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Reflectance Estimation and Dataset construction using multiple light sources
使用多个光源的反射率估计和数据集构建
- 批准号:
15K06076 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI: Acquisition of Nikon A1RSi Confocal Microscope with Hybrid Scanner, Spectral Unmixing and FLIM/FCS
MRI:购买带有混合扫描仪、光谱分离和 FLIM/FCS 的 Nikon A1RSi 共焦显微镜
- 批准号:
1039423 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Research of classification methods of hyper-spectral data, elucidation of the theoretical nature and applications to real data
高光谱数据分类方法研究、理论本质阐明及其在实际数据中的应用
- 批准号:
19300096 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algorithms for sub-pixel analysis of remotely, sensed hyperspectral images
遥感高光谱图像的亚像素分析算法
- 批准号:
17560376 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptive Thermal Unmixing of Water Temperature using Multispectral Imagery
使用多光谱图像进行水温的自适应热分解
- 批准号:
283049-2003 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Industrial Postgraduate Scholarships