Compliant and breathable magnetoelectronics: towards electronic proprioception

顺应且透气的磁电子学:迈向电子本体感受

基本信息

项目摘要

Augmented reality gadgets, e.g. Microsoft HoloLens or Oculus Rift devices are becoming common for our information intensive society assisting us to acquire and process the data. Although impressive in the realization and demonstrations, the obvious drawback of state-of-the-art augmented reality gadgets, which typically rely on optical detection systems, is their bulkiness, heaviness and the stringent requirement for an operator to be at the line of sight of the device. We envision that prospective augmented reality systems will rely on compliant on-skin interactive electronics, which is yet to be developed. In this project, we will develop haptically imperceptible on-skin gadgets, which replicate our natural proprioceptive sensory ability of detecting the motion. These novel magnetosensitive smart skins should be realized in a way not to disturb our everyday activities while worn on skin. This statement necessarily means that the prospective shapeable magnetoelectronics should become not only mechanically compliant but also breathable, e.g. enabling water evaporation and transport of oxygen. In this respect, polymeric foils, which are typically used in the field of compliant electronics, should be replaced with ultrathin textile-like materials. Those, in turn, should support the realization of high-performance magnetic field sensors. We propose that fibrous materials are the most suitable substrates to achieve this goal and realize breathable and highly compliant magnetic field sensors. Therefore, as the key objective of this project, we will explore the possibility to realize high-performance magnetic field sensors on fibrous materials. Furthermore, there is no data on the realization of breathable compliant permanent magnets, which are needed for on-skin applications involving compliant magnetic field sensors. Hence, ultimately, we aim at the development of the entire system containing breathable compliant magnetic field sensors, which will work in conjunction with breathable compliant magnets. In particular,1/ We aim to fundamentally understand the correlation between chemical nature of polymers, structure of electrospun mats and their mechanical properties;2/ We explore the possibility to realize high-performance magnetic field sensors on electrospun mats possessing porous structure with high local curvatures at the location of individual fibers;3/ We aim on the fabrication of compliant and breathable permanent magnets and will address the interplay of the mechanical properties (stability, cyclic performance) of laminated magnetic composites and their magnetic performance (not only strength but also spatial symmetry of the magnetic stray fields).
增强现实小工具,例如Microsoft HoloLens或Oculus Rift设备,在我们的信息密集型社会中越来越普遍,帮助我们获取和处理数据。虽然在实现和演示方面令人印象深刻,但通常依赖于光学检测系统的最先进的增强现实小工具的明显缺点是它们的笨重,沉重以及对操作员的严格要求。我们设想,未来的增强现实系统将依赖于兼容的皮肤上的交互式电子产品,这是尚未开发。在这个项目中,我们将开发触觉上难以察觉的皮肤小工具,它复制了我们检测运动的自然本体感觉能力。这些新颖的磁敏智能皮肤应该以一种不干扰我们日常活动的方式实现。这一陈述必然意味着,预期的可成形磁电子器件不仅应具有机械顺应性,而且还应具有可呼吸性,例如,使水蒸发和氧气输送成为可能。在这方面,通常用于柔性电子器件领域的聚合物箔应该被类似纺织品的材料所取代。反过来,这些应该支持实现高性能磁场传感器。我们建议,纤维材料是最合适的基板,以实现这一目标,并实现透气性和高顺应性的磁场传感器。因此,作为本项目的主要目标,我们将探索在纤维材料上实现高性能磁场传感器的可能性。此外,没有关于实现可呼吸的顺应性永磁体的数据,这是涉及顺应性磁场传感器的皮肤上应用所需要的。因此,最终,我们的目标是开发包含可呼吸顺应性磁场传感器的整个系统,该传感器将与可呼吸顺应性磁体一起工作。特别是,1/我们的目标是从根本上了解聚合物的化学性质,静电纺丝毡的结构和它们的机械性能之间的相关性:2/我们探索在静电纺丝毡上实现高性能磁场传感器的可能性,所述静电纺丝毡具有在单个纤维位置处具有高局部曲率的多孔结构; 3/我们的目标是制造兼容和透气的永磁体,并将解决机械性能的相互作用(稳定性、循环性能)及其磁性能(杂散磁场的强度和空间对称性)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Leonid Ionov其他文献

Professor Dr. Leonid Ionov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Leonid Ionov', 18)}}的其他基金

Fabrication of Vascular Networks based on Shape-Changing Polymers within 3D printed hydrogels
基于 3D 打印水凝胶内变形聚合物的血管网络的制造
  • 批准号:
    427208737
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
New tool for fabrication of microtissues with anisotropic fibrous structure based on touch-spinning and 3D printing.
基于接触纺丝和 3D 打印制造具有各向异性纤维结构的微组织的新工具。
  • 批准号:
    409232653
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fabrication of Microfibers with Complex Interior by Shape-Changing Polymers
利用变形聚合物制造具有复杂内部结构的微纤维
  • 批准号:
    396913955
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
AReversible Semicrystalline Polymeric Actuators
可逆半晶聚合物执行器
  • 批准号:
    398193778
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
New Electrodes Based on Polymer-Brush-Enzyme Decorated Carbon Particles for Electrochemical Bio-Sensing
用于电化学生物传感的基于聚合物刷酶修饰碳颗粒的新型电极
  • 批准号:
    444275765
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Wetting of structured surfaces with switchable topography and mechanical properties
具有可切换形貌和机械性能的结构化表面的润湿
  • 批准号:
    422917268
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

High-energy lithium-air batteries, a breathable future for renewable energy
高能锂空气电池,可再生能源的呼吸未来
  • 批准号:
    DE240100868
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
HempSil Board - a low carbon breathable insulating plasterboard
HempSil Board - 一种低碳透气绝缘石膏板
  • 批准号:
    10067643
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Amphitex: The world’s first fully circular and carbon-negative waterproof breathable textile
Amphex:世界上第一个全圆形负碳防水透气纺织品
  • 批准号:
    10035483
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Reducing droplet contact time for green and breathable water repellent rainwear
减少水滴接触时间,打造绿色透气防水雨衣
  • 批准号:
    577377-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
RAPID: Highly Customizable, Breathable N95 Mask Design Utilizing Kirigami-enabled Filters and Sensor Platforms to Maximize Comfort and Monitor usage Patterns
RAPID:高度可定制、透气的 N95 口罩设计,利用 Kirigami 功能的过滤器和传感器平台来最大限度地提高舒适度并监控使用模式
  • 批准号:
    2034626
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a sustainable, recyclable, and circular Waterproof Breathable Textile
开发可持续、可回收、循环的防水透气纺织品
  • 批准号:
    78721
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development of high performance, fully breathable incontinence pads
开发高性能、完全透气的失禁垫
  • 批准号:
    501419-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Applied Research and Development Grants - Level 2
Material characterization and hygrothermal performance of breathable and vapour tight polyisocyanurate insulation
透气气密聚异氰脲酸酯绝缘材料的材料特性和湿热性能
  • 批准号:
    531174-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
Development of skin-breathable organic optical sensor
皮肤可呼吸有机光学传感器的研制
  • 批准号:
    18H01491
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of high performance, fully breathable incontinence pads
开发高性能、完全透气的失禁垫
  • 批准号:
    501419-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Applied Research and Development Grants - Level 2
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了