Beyond the framework of classical arithmetic geometry-Zeta, arithmetic topology, and categorical arithmetic geometry

超越经典算术几何的框架——Zeta、算术拓扑和分类算术几何

基本信息

  • 批准号:
    16204002
  • 负责人:
  • 金额:
    $ 15.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

As an application of geometric topology in the area of arithmetic geometry, М. Matsumoto and R. Hain Obtained the, following result : The action of the absolute Galois group of a number field on the unipotent fundamental group of a curve C attains the maximum size, if and only if the Galois cohomology cocycle corresponding to the algebraic cocycle C-C^- in the jacobian of C. This was published in J. of Institute of Mathematics Jussieu. More recently, the Galois action on the weighted completion of the mapping class group of the genus g>1 curves is proved to be crystalline and of mixed Tate type ; Whereas for g=1 it is not mixed Tate.Tamagawa constructed a resolution of nonsingularities of smooth curve family over DVR with mixed characteristic. This was published in Publications of RIMS. This results reduces the proper Grothendieck conjecture to the affine one. Mochizuki developped the theory of categorical arithmetic geometry and frobenioids, which give an approach to the ABC conjecture.Tsuzuki introduced the notion of the universal cohomology descendability and unimversal de Rham descendability for rigid cohomology, and obtaind an extention of Kedlaya's finite dimerisionality.Kimura developed the notion of finite dimensionality of a morphism of pure motives, and constructed many non-trivial examples of finite dimensional motives.Sigeyuki Morita studied the mapping class group and the derivation algebra of nilpotent fundamental groups, and obtained cohomological results and conjectures on the image of Soule elements. The paper was published in Proc. Sympos. Pure Mathematics.Matsumoto utilized the geometry of formal power series and Galois theory, to designe a new fast pseudorandom number generator taking full advantage of paralellism of recent CPUs. A paper is accepted in Proceedings of MCQMC2006.
作为几何拓扑学在算术几何中的应用,本文给出了一个新的几何拓扑学方法。松本和R.海恩得到了如下结果:数域的绝对伽罗瓦群在曲线C的幂幺基本群上的作用达到最大尺寸,当且仅当C的雅可比行列式中的代数上圈C-C^-对应的伽罗瓦上同调上圈。这是发表在J.数学研究所Jussieu。最近,证明了亏格g>1曲线的映射类群的加权完备化的Galois作用是结晶的且是混合Tate型的,而当g=1时,它不是混合Tate型的.Tamagawa构造了DVR上具有混合特征的光滑曲线族的非奇异性分解.这篇文章发表在RIMS出版物上。这一结果将原Grothendieck猜想简化为仿射猜想。Mochizuki发展了范畴算术几何和Frobenioids理论,解决了ABC猜想; Tsuzuki引入了刚性上同调的泛上同调可降性和unimplemented de Rham可降性的概念,并得到了Kedlaya有限二分性的推广; Kimura发展了纯动机态射的有限维数的概念,Sigeyuki Morita研究了幂零基本群的映射类群和导子代数,得到了关于Soule元象的上同调结果和图解。该论文发表在Proc. Sympos上。纯数学。松本利用形式幂级数几何和伽罗瓦理论,设计了一种新的快速伪随机数发生器,充分利用了当前CPU的并行性。一篇论文被MCQMC 2006会议录接受。

项目成果

期刊论文数量(107)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diophantine phenomena in commuting vector fields and diffeomorphisms
通勤矢量场和微分同胚中的丢番图现象
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wada;K.;M.Yoshino
  • 通讯作者:
    M.Yoshino
Categories of log schemes with Archimedean structures.
具有阿基米德结构的对数方案的类别。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iida;A.;Kajima;S.;Ohta;A.;Takahashi;M.;T. Nakano;S.Mochizuki
  • 通讯作者:
    S.Mochizuki
Chow groups are finite dimensional, in some sense
从某种意义上说,Chow 群是有限维的
On ordinary primes for modular forms and the theta operator
模形式的普通素数和 theta 算子
Improved Long-Period Generators Based on Linear Reccurences Modulo 2
基于线性递推模 2 的改进长周期发生器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUMOTO Makoto其他文献

MATSUMOTO Makoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUMOTO Makoto', 18)}}的其他基金

Number theory, geometry and their application to algorithm
数论、几何及其在算法中的应用
  • 批准号:
    18K03213
  • 财政年份:
    2018
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
IgE-mediated host defense mechanism during Strongyloides venezuelensisinfection
委内瑞拉类圆线虫感染过程中 IgE 介导的宿主防御机制
  • 批准号:
    22590384
  • 财政年份:
    2010
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High performance random number generator for new generation
新一代高性能随机数发生器
  • 批准号:
    21654017
  • 财政年份:
    2009
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New developments in number theory and geometry : arithmetic topology, categorical arithmetic geometry, algorithm
数论与几何新进展:算术拓扑、分类算术几何、算法
  • 批准号:
    19204002
  • 财政年份:
    2007
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
The role of interleukin-33 on the murine model of experimental asthma
IL-33对小鼠实验性哮喘模型的作用
  • 批准号:
    19590501
  • 财政年份:
    2007
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of Moduli Spaces and Galois Actions
模空间的几何和伽罗瓦作用
  • 批准号:
    13440005
  • 财政年份:
    2001
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Clinical, Periodical and Physiological Evaluation of Changes in Masticatory Load Center and Function
咀嚼负荷中心和功能变化的临床、定期和生理学评估
  • 批准号:
    08457653
  • 财政年份:
    1997
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Physiological Evaluation Hybrid Oral Rehabilitation
生理评估混合口腔康复
  • 批准号:
    05454527
  • 财政年份:
    1993
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
A Physiological and Morphological Evaluation for Designing of Bilateral Free End Saddle Denture Occlusion
双侧游离端鞍形义齿咬合设计的生理和形态学评价
  • 批准号:
    01480445
  • 财政年份:
    1989
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Theraptic occlusal function in geriatrically maturated partially edentate mouth by removable partial denture
可摘局部义齿对老年成熟部分无齿口腔的咬合功能的治疗
  • 批准号:
    62480476
  • 财政年份:
    1987
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

On the fundamental group and non-negativity of curvature for pseudo-Riemannian submersion
关于伪黎曼淹没的基本群和曲率非负性
  • 批准号:
    20K14315
  • 财政年份:
    2020
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on fundamental group actions on derived categories of coherent sheaves and spaces of stability conditions
相干滑轮派生类和稳定条件空间的基本群作用研究
  • 批准号:
    19K14502
  • 财政年份:
    2019
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
  • 批准号:
    17K18728
  • 财政年份:
    2017
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The fundamental group and the classification of surfaces and 3-manifolds
曲面和三流形的基本群和分类
  • 批准号:
    496023-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 15.56万
  • 项目类别:
    University Undergraduate Student Research Awards
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
  • 批准号:
    481788-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Cohomology of Deligne-Lusztig varieties and the fundamental group of the Drinfeld halfspace over a finite field.
Deligne-Lusztig 簇的上同调和有限域上的 Drinfeld 半空间的基本群。
  • 批准号:
    279354432
  • 财政年份:
    2015
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Research Grants
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
  • 批准号:
    25887030
  • 财政年份:
    2013
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Motivic fundamental group and motivic Galois group
动机基本群和动机伽罗瓦群
  • 批准号:
    21740008
  • 财政年份:
    2009
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0939587
  • 财政年份:
    2008
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0706878
  • 财政年份:
    2007
  • 资助金额:
    $ 15.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了