Brownian Dynamics Simulations including Explicit Atoms for Modeling Transport through Nanopores

布朗动力学模拟,包括用于模拟纳米孔传输的显式原子

基本信息

项目摘要

Transport through nanopores is of key importance in many fields of natural sciences and medicine. For example, Gram-negative bacteria possess an outer membrane which serves as a physical barrier for the penetration into these bacteria. The translocation of through membrane pores is often the only pathway to get antibiotics into these cells. Only for a limited number of membrane pores and antimicrobial compounds, the influx into the bacteria is reasonably well understood. Atomistic simulations of antibiotics translocations are these days feasible for individual combinations of pores and compounds but numerically quite expensive. Thus, molecular dynamics simulations are unfeasible for testing larger numbers of molecule-pore combinations. Another example of a pore, for which transport simulations at an all-atom level are numerically expensive just due the sheer size, is the channel-forming protective antigen (PA63) component of the anthrax toxin.The project focuses on a Brownian dynamics approach including explicit atoms termed BRODEA. A first version of this scheme has been developed recently and tries to combine the computational efficiency of Brownian dynamics simulations with a fully atomistic force field representation for important parts of the system. The possible inclusion of explicit atoms into the Brownian dynamics framework allows to relax the rigid channel and especially the rigid substrate assumption. One aim of the present project is to improve the electrostatic description between the Brownian and the molecular dynamics frameworks. Moreover, the approach will be further validated for combinations of molecules and pores for which either molecular dynamics data exist or will be calculated.The BRODEA approach will be employed to the translocation of a variety of antibiotics molecules through a series of porins of pathogenic bacteria for which the structures were only resolved recently. While for charged molecules steering by electric fields can be used, for neutral compounds, free energy surfaces need to be determined. Additional calculations will involve the effect of divalent ions on these translocation processes. These calculations for a variety of compounds and channels will give an assessment in which case the new hybrid approach can be employed to yield reliable results.Moreover, the BRODEA approach can facilitate a fast yet reasonably reliable way of performing simulations for long channels of toxins. Since the ion transport through the channel-forming protective antigen (PA63) component of the anthrax toxin has not yet been studied on the molecular dynamics level, we foresee such simulations to obtain some benchmark data for the subsequent mixed Brownian-molecular dynamics calculations. Thereafter, molecules potentially blocking the channel will be investigated.
在自然科学和医学的许多领域中,通过纳米孔的运输是至关重要的。例如,革兰氏阴性细菌具有一层外膜,作为渗透这些细菌的物理屏障。通过膜孔的易位通常是抗生素进入这些细胞的唯一途径。只有对有限数量的膜孔和抗菌化合物,流入细菌是相当好的理解。目前,抗生素易位的原子模拟对于单个孔隙和化合物的组合是可行的,但在数值上相当昂贵。因此,分子动力学模拟对于测试大量的分子-孔隙组合是不可行的。另一个孔的例子是炭疽毒素的通道形成保护性抗原(PA63)成分,由于其纯粹的大小,在全原子水平上的传输模拟在数值上是昂贵的。该项目侧重于布朗动力学方法,包括称为BRODEA的显式原子。该方案的第一个版本最近已经开发出来,并试图将布朗动力学模拟的计算效率与系统重要部分的完全原子力场表示结合起来。布朗动力学框架中可能包含的显式原子允许放松刚性通道,特别是刚性衬底假设。本项目的目的之一是改进布朗动力学和分子动力学框架之间的静电描述。此外,该方法将进一步验证分子和孔隙的组合,其中分子动力学数据存在或将被计算。BRODEA方法将用于多种抗生素分子通过病原菌的一系列孔蛋白的易位,这些孔蛋白的结构最近才被解决。对于带电分子,可以使用电场控制,而对于中性化合物,需要确定自由能面。附加的计算将涉及二价离子对这些易位过程的影响。这些对各种化合物和通道的计算将给出一个评估,在这种情况下,新的混合方法可以被用来产生可靠的结果。此外,BRODEA方法可以促进一种快速而合理可靠的方法来模拟毒素的长通道。由于离子通过炭疽毒素的通道形成保护性抗原(PA63)组分的运输尚未在分子动力学水平上进行研究,因此我们预计这样的模拟将为随后的混合布朗分子动力学计算获得一些基准数据。此后,可能阻断通道的分子将被研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Kleinekathöfer其他文献

Professor Dr. Ulrich Kleinekathöfer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Kleinekathöfer', 18)}}的其他基金

Molecular modeling of spectroscopy and quantum phenomena in light-harvesting complexes
光捕获复合物中光谱和量子现象的分子建模
  • 批准号:
    226668712
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation of ion transport and substrate translocation through nanopores
模拟通过纳米孔的离子传输和底物易位
  • 批准号:
    135618365
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effects of time-dependent perturbations on the electron transport through single molecules
时间相关扰动对单分子电子传输的影响
  • 批准号:
    24982018
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Ab initio description of the quantum mechanics in light-harvesting complexes of purple bacteria
紫色细菌光捕获复合物中量子力学的从头计算
  • 批准号:
    18592143
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular modeling of charge transfer in heme-containing systems: a time-dependent view
含血红素系统中电荷转移的分子建模:时间依赖性观点
  • 批准号:
    533004272
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Computational nanopore redesign for the sensing of chiral peptide isomers
用于传感手性肽异构体的计算纳米孔重新设计
  • 批准号:
    539124018
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Excitation Energy Transfer in a Photosynthetic System with more than 100 Million Atoms
超过 1 亿个原子的光合作用系统中的激发能量转移
  • 批准号:
    466761712
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multi-fidelity, active learning strategies for exciton transfer among adsorbed molecules
吸附分子之间激子转移的多保真主动学习策略
  • 批准号:
    496900167
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
  • 批准号:
    10749273
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations
元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用
  • 批准号:
    2311372
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319144
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Digital Quantum Simulations of Ground States and Dynamics: Analysis and Realizations
基态和动力学的数字量子模拟:分析和实现
  • 批准号:
    2310614
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Multiparticle collision dynamics simulations of mesoscale hydrodynamic interactions in complex soft materials and environments
合作研究:元素:复杂软材料和环境中中尺度流体动力学相互作用的多粒子碰撞动力学模拟
  • 批准号:
    2310725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Historical Simulations of Greenland Ice-sheet Dynamics: The Imprint of Early Ice Loss on Recent and Future Change
格陵兰冰盖动力学的历史模拟:早期冰损对近期和未来变化的影响
  • 批准号:
    2422350
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
  • 批准号:
    EP/X026973/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
  • 批准号:
    EP/Y034686/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了