Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
基本信息
- 批准号:11440014
- 负责人:
- 金额:$ 7.55万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Directed by the head investigator Suwa, the research on characteristic of singular varieties, in particular the theory of Milnor classes and related topics have been performed, as described in the research proposal, We obtained an explicit formula for the Minor class of a non- singular component of singular variety, the notion of the homology Chern class is introduced. The Riemann-Roch theorem for embeddings of singular varieties are proved arid used to compute the Chern class of the tangent sheaf of a singular variety. As an application of the theory of localization of characteristic classes, we defined, for functions on singular varieties the notion of multiplicity at the singularity, gave the method to compute them and proved, in the global situation, the "multiplicity formula", which generalized well-known classical formula in the non-singular case. We also gave a direct and geometric proof of the Lefschetz fixed point formula for the de Rham and Dolbeault complexes.The other investigators collaborated in the above projects and also obtained many other results in the subjects such as : the moduli space of Abelian varieties, me McKay correspondence of simple singularities, developable surfaces of curves in the Euclidean space and classification of singularities of Dalboux sphere representations, stability of singular Lagrangian varieties, singular fibers of elliptic K3 surges and the torsion subgroup of the Mordell-Weli group, geometry of sextic curves of torus type and the geometry of dual curves, an alternative proof of the algebraic independence of the Monta-Mumfoixl classes, parital answer to the Akita conjecture on the mapping class group.
如研究提案所述,由首席研究员Suwa导演,有关奇异品种特征的研究,尤其是Milnor类和相关主题的理论,我们获得了一个明确的公式,用于引入奇异品种的非单数组成部分,即同源类别的概念Chern Chern Chern Chern类。事实证明,用于计算奇异品种的切线捆的Chern类别的Riemann-Roch定理被证明是干旱的。作为特征类别定位理论的应用,我们定义了在奇异品种上的函数,以奇异性的多样性概念进行了计算它们的方法,并在全球情况下证明了“多重性公式”,在非单明性情况下,该概述了概括性的经典公式。 We also gave a direct and geometric proof of the Lefschetz fixed point formula for the de Rham and Dolbeault complexes.The other investigators collaborated in the above projects and also obtained many other results in the subjects such as : the moduli space of Abelian varieties, me McKay correspondence of simple singularities, developable surfaces of curves in the Euclidean space and classification of singularities of Dalboux sphere表示,奇异品种的稳定性,椭圆形K3的奇异纤维以及Mordell-Weli组的扭转亚组,六曲线类型的六曲线几何形状以及双向曲线的几何形状,蒙塔(Monta-Mumfoixl Classe)的代数独立性的替代性证明了pare complate complate complate complate complate complate complate contaper conterage complate pareperty on parity paritage and paritaper and paritage and paritage noception paritage and parital paritame nocping the parital mopperty paritage。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Oka: "Flex curves and their applications"Geometriae Dedicata. 75. 67-100 (1999)
M. Oka:“弯曲曲线及其应用”Geometriae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Suwa: "Characteristic classes of coherent sheaves on singular varieties"Singularities-Sapporo 1998, ASPM. 29. 279-297 (2000)
T.Suwa:“奇异品种上相干滑轮的特征类别”Singularities-Sapporo 1998,ASPM。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Nakamura: "Hilbert scheme of G-orbits in dimension three"Asian J.Math. 4. 51-70 (2000)
I.Nakamura:“第三维 G 轨道的希尔伯特方案”亚洲 J.Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Ishikawa: "Topological classification of the taugent developables of space curves"J.London Math.Soc.. 62. 583-598 (2000)
G.Ishikawa:“空间曲线的 taugent 可展性的拓扑分类”J.London Math.Soc.. 62. 583-598 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Oka: "Geometry of cuspidal sextics and their dual curves"Singularties-Sapporo 1998, ASPM. 29. 245-277 (2000)
M.Oka:“尖六角几何及其对偶曲线”Singularties-Sapporo 1998,ASPM。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUWA Tatsuo其他文献
SUWA Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUWA Tatsuo', 18)}}的其他基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residue theory on singular varieties and its applications
奇异品种残差理论及其应用
- 批准号:
24540060 - 财政年份:2012
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating non-use value of natural environment by using Kuhn Tucker model
利用Kuhn Tucker模型估算自然环境的非使用价值
- 批准号:
23710050 - 财政年份:2011
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Localization theory of Atiyah classes and its applications
Atiyah类定位理论及其应用
- 批准号:
21540060 - 财政年份:2009
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Residues on Singular Varieties
单一品种的残留
- 批准号:
15340016 - 财政年份:2003
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
07454011 - 财政年份:1995
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
02452001 - 财政年份:1990
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
18340015 - 财政年份:2006
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Residues on Singular Varieties
单一品种的残留
- 批准号:
15340016 - 财政年份:2003
- 资助金额:
$ 7.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)