Residues on Singular Varieties
单一品种的残留
基本信息
- 批准号:18340015
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator and the others did research on residues on singular varieties and related subjects. More specifically:1. We developed a theory of localization of Chern classes by frames of vector bundles on singular varieties. In the previous year, we gave explicit expressions (analytic, algebraic and topological)of the residues at an isolated singularity. In this research, we gave an expression in the case the singularity is not isolated.2. As an application of 1 above, we developed an analytic intersection theory on singular varieties. This clarifies global intersections, local intersections and the relation between the two. In the global case, the localization theory of Chern classes is very effective and in the local case, Grothendieck residues on singular varieties play an essential role. The two situations are related by the residue theorem.3. As a summary of collaboration with J.-P. Brasselet and J. Seade, we almost finished writing a book on the characteristic classes of singular varieties utilizing indices and residues of vector fields. This also includes a new simple proof of the Proportionality Theorem, which describes a fundamental property of the local Euler obstruction of singular varieties.4. In the collaboration with M. Abate, F. Bracci and F. Tovena, we started to construct a localization theory of Atiyah classes of holomorphic vector bundles. This theory is expected to be very interesting and have many applications.5. Besides the above, Ohmoto obtained important results on the characteristic classes of varieties with group actions, Oka on the fundamental group of the complement of algebraic curves, Saito on Lie algebras and singularities, Tajima on Milnor and Tjurina numbers, Yokura on motivic characteristic classes, respectively.
首席调查员和其他人对单一品种和相关主题的残留进行了研究。更具体地说:1.利用奇异簇上向量丛的框架,建立了陈氏类的局部化理论。在前一年,我们给出了孤立奇点上的留数的显式表达式(解析的、代数的和拓扑的)。在本研究中,我们给出了在奇点不是孤立的情况下的表达式。作为上述1的一个应用,我们发展了关于奇异簇的解析交理论。这澄清了全局交叉口、局部交叉口以及两者之间的关系。在全局情形下,Chern类的局部化理论是非常有效的,而在局部情形下,奇异变种上的Grothendieck残差起着至关重要的作用。这两种情况通过留数定理联系在一起。作为与J.P.Brasselet和J.Seade合作的总结,我们几乎写完了一本关于利用向量场的指数和剩余来刻画奇异变种的特征类的书。这也包括了一个新的简单的比例定理的证明,该定理描述了奇异变量的局部欧拉阻塞的一个基本性质。在M.Abate,F.Bracci和F.Tovena的合作下,我们开始构造全纯向量丛的Atiyah类的局部化理论。预计这一理论将非常有趣,并有许多应用。此外,Ohmoto关于群作用簇的特征类,Oka关于代数曲线补的基本群,Saito关于李代数和奇点,Tajima关于Milnor和Tjuina数,Yokura关于动机特征类分别得到了重要的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proportionality of indices of 1-forms on singular varieties
奇异变体上 1-形式指数的比例性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.Suwa;J.-P.Brasselet;J.Seade
- 通讯作者:J.Seade
Singularities in Geometry and Topology
几何和拓扑中的奇点
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Tomohiro Ogawa;Hiroshi Nagaoka;J. -P. Brasselet and T. Suwa
- 通讯作者:J. -P. Brasselet and T. Suwa
Residue Theoretical Approach to Intersection Theory
相交理论的剩余理论方法
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:A. A. Davydov;G. Ishikawa;S. Izumiya;W.-Z. Sun;G. Ishikawa;大本 亨;S. Yokura;G. Ishikawa;G. Ishikawa;T. Akita;T. Akita;T. Suwa
- 通讯作者:T. Suwa
Classes de Hirzebruch et classes de Chern motiviques
赫策布鲁赫课程和陈省身动机课程
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Jean-Paul Brasselet;Jorg Schurmann;Shoji Yokura
- 通讯作者:Shoji Yokura
Fundamental groups of the complements of certain plane non-tame toru sextics
某些平面非驯服六性学的补语的基本群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:M.Oka;C.Eyral
- 通讯作者:C.Eyral
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUWA Tatsuo其他文献
SUWA Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUWA Tatsuo', 18)}}的其他基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residue theory on singular varieties and its applications
奇异品种残差理论及其应用
- 批准号:
24540060 - 财政年份:2012
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating non-use value of natural environment by using Kuhn Tucker model
利用Kuhn Tucker模型估算自然环境的非使用价值
- 批准号:
23710050 - 财政年份:2011
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Localization theory of Atiyah classes and its applications
Atiyah类定位理论及其应用
- 批准号:
21540060 - 财政年份:2009
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
- 批准号:
15340016 - 财政年份:2003
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
- 批准号:
11440014 - 财政年份:1999
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
07454011 - 财政年份:1995
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
- 批准号:
02452001 - 财政年份:1990
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
- 批准号:
16K05116 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




