Research on Complex Analytic Geometry and Singularity Theory

复解析几何与奇异性理论研究

基本信息

  • 批准号:
    07454011
  • 负责人:
  • 金额:
    $ 4.99万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

The research was done mainly on the indices and residues of vector fields and holomorphic singular foliations, the charactreistic classes of singular varieties, the Cech-de Rham cohomology theory and integration theory on stratified spaces. Let us be more specific.(1) Collaboration with J.Seade on the residue theorem for the Baum-Bott residues of foliations on open manifolds and its applications. The joint paper on this has been published in Mathematische Annalen.(2) In another collaboration with J.Seade, we investigated various indices of vector fields on varieties with isolated singularities and we obtained an "adjunction formula" for such varieties. The results are written in a joint paper.(3) As an application of the formula in (2), a formula for the Chem-Schwartz-MacPherson class of a local complete intersection variety with isolated singularities is obtained. The result has been published in C.R.Acad.Sci., Paris.(4) As a generalization of the formula in (2), in a collaboration with D.Lehmann and J.Seade, we introduced a generalized Milnor number and obtained a similar formula for varieties with possibly non-isolated singularities. The results are written in a joint paper.(5) In a joint work with B.Khanedani, we studied the invariants of singular holomorphic foliations on complex surfaces and obtained various formulas. The joint paper on these will appear in Hokkaido Math.J.(6) In a joint work with T.Honda, we proved a residue formula for meromorphic functions on complex surfaces and gave some applications. The results are written in a joint paper.(7) In a collaboration with J.-P.Brasselet, we studied the Nash modification associated with a sinular holomorphic foliation and, as an application, we proved a conjecture of Baum-Bott in some cases. The results are written in a joint paper.
主要研究了向量场和全纯奇异叶理的指标和留数,奇异簇的特征类,Cech-de Rham上同调理论和分层空间上的积分理论。让我们更具体地说。(1)与J.Seade合作研究开流形上叶状的Baum-Bott剩余的剩余定理及其应用。关于这一点的联合论文已发表在Mathematische Annalen。(2)在与J.Seade的另一次合作中,我们研究了具有孤立奇点的簇上的向量场的各种指数,并得到了这种簇的“附加公式”。研究结果发表在一份联合论文中。(3)作为(2)中公式的应用,得到了具有孤立奇点的局部完全交簇的Chem-Schwartz-MacPherson类的一个公式.该研究结果已发表在C.R.Acad.Sci.上,巴黎。(4)作为(2)中公式的推广,我们与D.Lehmann和J.Seade合作,引入了一个广义Milnor数,并对可能具有非孤立奇点的簇得到了一个类似的公式。研究结果发表在一份联合论文中。(5)在与B.Khanedani的合作工作中,我们研究了复曲面上奇异全纯叶理的不变量,得到了各种公式。关于这些问题的联合论文将发表在北海道数学杂志上。(6)在与T.本田的合作工作中,我们证明了复曲面上亚纯函数的一个留数公式,并给出了一些应用。研究结果发表在一份联合论文中。(7)在与J的合作中,P. Scholelet,我们研究了正弦全纯叶理的Nash修正,并作为应用,证明了Baum-Bott的一个猜想。研究结果发表在一份联合论文中。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Kawazumi: "The primary approximation to the cohomology of the moduli space of curves and cocycles for the stable cohomology classes" Math.Research Lett.3. 629-641 (1996)
N.Kawazumi:“稳定上同调类的曲线和余循环模空间上同调的主要近似”Math.Research Lett.3。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
G.Ishikawa: "Develspable of a ucrve and determinacy elatuie to osaulation type" Quart.J.Meth.Oxford. 46. 437-451 (1995)
G.Ishikawa:“对 osaulation 类型的 ucrve 和确定性 elatuie 的可开发性”Quart.J.Meth.Oxford。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Suwa: "Classes de Chern des intersections completes locales" C. R. Acid. Sei.,Paris. 324. 67-70 (1996)
T.Suwa:“Classes de Chern des junctions Completes locales” C. R. Acid。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.A'Campo: "Geowetoy of Nane curves via Tschirnhauser tower" Osaka J. Math.33. 1003-1004 (1997)
N.ACampo:“通过 Tschirnhauser 塔的 Nane 曲线的 Geoweetoy”Osaka J. Math.33。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Nakamura: "Moishezon threcfolds boueomoplric to a cibic bysecsubace in P^4" J.Algeluaic Geovnetry. 印刷中 (1996)
I.Nakamura:“Moishezon threcfolds boueoomoplric to a cibic bysecsubace in P^4” J.Algeluaic Geovnetry 已出版(1996 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUWA Tatsuo其他文献

SUWA Tatsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUWA Tatsuo', 18)}}的其他基金

Theory of residues associated with localization of characteristic classes and its applications
与特征类定位相关的残差理论及其应用
  • 批准号:
    16K05116
  • 财政年份:
    2016
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Residue theory on singular varieties and its applications
奇异品种残差理论及其应用
  • 批准号:
    24540060
  • 财政年份:
    2012
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimating non-use value of natural environment by using Kuhn Tucker model
利用Kuhn Tucker模型估算自然环境的非使用价值
  • 批准号:
    23710050
  • 财政年份:
    2011
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Localization theory of Atiyah classes and its applications
Atiyah类定位理论及其应用
  • 批准号:
    21540060
  • 财政年份:
    2009
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Residues on Singular Varieties
单一品种的残留
  • 批准号:
    18340015
  • 财政年份:
    2006
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Residues on Singular Varieties
单一品种的残留
  • 批准号:
    15340016
  • 财政年份:
    2003
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Characteristic Classes of Singular Varieties
单一品种特征类研究
  • 批准号:
    11440014
  • 财政年份:
    1999
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on Complex Analytic Geometry and Singularity Theory
复解析几何与奇异性理论研究
  • 批准号:
    02452001
  • 财政年份:
    1990
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Singular Foliations: Desingularization and the Baum-Connes Conjecture
奇异叶状结构:去奇异化和鲍姆-康尼斯猜想
  • 批准号:
    272988935
  • 财政年份:
    2015
  • 资助金额:
    $ 4.99万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了