Multilateral research of stochastic analysis in infinite dimensional spaces
无限维空间随机分析的多边研究
基本信息
- 批准号:11440045
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have accomplished the research of the semigroup domination and the intertwining property of semigroups. The semigroup domination stands for that |T^^→_tu|【less than or equal】T_t|u| holds for semigroup T^^→_t and T_t. Here u are supposed to be a vector valued function. Typical example is a differential form on a Riemannian manifold. The characterization in terms of the generator is known. We give here a sufficient condition in terms of square field operator. Crucial assumptions are the positivity and the locality. Intertwining property is the following property: for two generator L, L^^→, it holds that DL = L^^→D + R. We give necessary and sufficient conditions in terms of the semigroup and the resolvents. Our aim has been to reconstruct the.Bakry-Emery T_2 theory but we have succeeded in including diffusion processes with boundary condition and it gives a generalization of Bakry-Emery T_2 theory.For application, we can make use of them to show the Littlewood-Paley inequality and the L^p multiplier theorem. In fact, we have considered the Brownian motion on an Riemannian manifold with boundary and show the Littlewood-Paley inequality for it under the assumption of positivity of the second fundamental form of the boundary. Making use of this, we can show the L^p boundedness of the Riesz transformation. L^p multiplier theorem is to give an sufficient condition on φ and A so that φ(A) is a bounded operator on L_p. Stein showed this for a generator of a symmetric diffusion process with φ being of Laplace transform type. We have shown that the same result holds for the Hodge-Kodaira operator on a Riemannian manifold.
我们完成了半群支配和半群的交织性质的研究。半群支配表示|T^^→_tu|【小于或等于】T_t|u|对于半群T^^→_t和T_t成立。这里u应该是一个向量值函数。典型的例子是黎曼流形上的微分形式。发电机的特性是已知的。本文给出了平方域算子的一个充分条件。关键的假设是积极性和局部性。交织性质是:对于两个生成子L, L^^→,DL = L^^→D + r,给出了半群及其解的充分必要条件。我们的目标是重建。Bakry-Emery T_2理论,但我们成功地包含了边界条件下的扩散过程,并给出了Bakry-Emery T_2理论的推广。在实际应用中,我们可以利用它们来证明Littlewood-Paley不等式和L^p乘数定理。实际上,我们已经考虑了带有边界的黎曼流形上的布朗运动,并在边界的第二种基本形式为正的假设下给出了它的Littlewood-Paley不等式。利用这一点,我们可以证明Riesz变换的L^p有界性。L^p乘子定理是为了给出φ和A上φ(A)是L_p上有界算子的充分条件。对于φ为拉普拉斯变换型的对称扩散过程的发生器,Stein证明了这一点。我们已经证明了同样的结果适用于黎曼流形上的Hodge-Kodaira算子。
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Naomasa Ueki: "Asymototic expansion of stochastic osoillatory integrals with rotation in varianc"Ann. Inst. H. Poincare Probab. Statist.. 35. 417-457 (1999)
Naomasa Ueki:“具有变方差旋转的随机振荡积分的渐进展开”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naomasa Ueki: "Asymptotic expansion of stochastic oscillatory integrals with rotation invariance"Ann. Inst. H. Poincare Probab. Statist. 35. 417-457 (1999)
Naomasa Ueki:“具有旋转不变性的随机振荡积分的渐近展开”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuo Yoshida: "Application of log : Soberly inequality to the stochastic dynamics of unbounded spin systems on the lattice"Journal of Functional Analysis. 173. 74-102 (2000)
Nobuo Yoshida:“对数的应用:清醒的不等式对晶格上无界自旋系统的随机动力学”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naomasa Ueki: "Asymptotic expansion of stochastic osillatory integrals with rotation invariance"Ann. Inst. H. Poincare Probab. Statist.. 35. 417-457 (1999)
Naomasa Ueki:“具有旋转不变性的随机振荡积分的渐近展开”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ichiro Shigekawa: "Littlewood-Paley inequality for a diffusion satisfying the logarithmic Sobolev inequality and for the Brownian motion on a Riemanhian manifold with boundary"Osaka J. Math.. (to appear).
Ichiro Shigekawa:“Littlewood-Paley 不等式用于满足对数 Sobolev 不等式的扩散以及带边界的黎曼流形上的布朗运动”Osaka J. Math..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIGEKAWA Ichiro其他文献
SHIGEKAWA Ichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIGEKAWA Ichiro', 18)}}的其他基金
Infinite dimensional stochastic analysis and geometry
无限维随机分析和几何
- 批准号:
21340030 - 财政年份:2009
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic analysis in infinite dimensional spaces
无限维空间中的随机分析
- 批准号:
17340036 - 财政年份:2005
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated research of Probability Theory
概率论综合研究
- 批准号:
14204008 - 财政年份:2002
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stochastic analysis on a loop group
循环群的随机分析
- 批准号:
08454041 - 财政年份:1996
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)