Study on the fundamental solutions to the equations of radiating gases and its applications
辐射气体方程基本解的研究及其应用
基本信息
- 批准号:11440049
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study the stability of nonlinear waves for hyperbolic-elliptic coupled systems in radiation hydrodynamics and related equations.1. By using the Fourier transform, we give a representation formula for the fundamental solutions to the linearized systems of hyperbolic-elliptic coupled systems and verify that the principal part of the fundamental solutions is given explicitly in terms of the heat kernel. Also, we obtain the sharp pointwise estimates for the error terms.2. We obtain the pointwise decay estimate of solutions to the hyperbolic-elliptic coupled systems by using the representation formula for the fundamental solution and the corresponding estimates. Furthermore, we prove that the solution is asymptotic to the superposition of diffusion waves which propagate with the corresponding characteristic speeds.3. We discuss a singular limit of the hyperbolic-elliptic coupled systems. We prove that at this limit, the solution of the hyperbolic-elliptic coupled system converges to that of the corresponding hyperbolic-parabolic coupled system.4. We show the existence of stationary solutions to the discrete Boltzmann equation in the half space. It is proved that the stationary solution approaches the far field exponentially and is asymptotically stable for large time.5. We study the asymptotic behavior of nonlinear waves for the isentropic Navier-Stokes equation in the half space. For the out-flow problem, we prove the asymptotic stability of nonlinear waves such as (1)stationary wave, (2)rarefaction wave, and (3)superposition of stationary wave and rarefaction wave.
研究了辐射流体动力学中双曲-椭圆耦合系统的非线性波的稳定性及其相关方程。利用傅里叶变换,给出了双曲-椭圆耦合系统线性化系统的基本解的表示公式,并证明了基本解的主部是用热核的形式显式给出的。此外,我们还得到了误差项的精确的逐点估计。利用基本解的表示公式和相应的估计,得到了双曲-椭圆耦合系统解的点向衰减估计。进一步证明了该解对于以相应特征速度传播的扩散波的叠加是渐近的。讨论了双曲-椭圆耦合系统的奇异极限。证明了在此极限下,双曲-椭圆耦合系统的解收敛于相应的双曲-抛物耦合系统的解。我们证明了离散玻尔兹曼方程在半空间中平稳解的存在性。证明了平稳解以指数方式逼近远场,并在大时间内渐近稳定。研究了半空间中等熵Navier-Stokes方程的非线性波的渐近行为。对于流出问题,我们证明了(1)驻波,(2)稀疏波,(3)驻波和稀疏波的叠加非线性波的渐近稳定性。
项目成果
期刊论文数量(104)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shinya Nishibata: "Large time behavior of solutions to the Cauchy problem for one-dimensional thermoelastic system with dissipation"J. Inequal. Appl.. 6. 167-189 (2001)
Shinya Nishibata:“一维热弹性系统耗散柯西问题解的大时间行为”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Kagei: "On thermal convection equations of Oberbeck-Boussinesq type with the dissipation function"京都大学数理解析研究所講究録. 1146. 1-15 (2000)
Y.Kagei:“关于带有耗散函数的 Oberbeck-Boussinesq 型热对流方程”京都大学数学科学研究所 Kokyuroku 1146. 1-15 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kobayashi: "Decay estimates of solutions for the eguations of motion of conpressible viscous and heat-conductive gases in an exterior domain"Commun.Math.Phys.. 200. 621-659 (1999)
T.Kobayashi:“外部域中可压缩粘性和导热气体运动方程解的衰变估计”Commun.Math.Phys.. 200. 621-659 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.kobayashi: "On global motion of a compressible viscous Huid with boundary slip condition"Applicationes Mathmaticae. 26. 159-194 (1999)
T.kobayashi:“关于具有边界滑移条件的可压缩粘性流体的整体运动”数学应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kato: "Analyticity and smoothing effect for the Korteweg-deVries eguation with a single point singularity"Math.Annalen. (発表予定).
K.Kato:“具有单点奇点的 Korteweg-deVries 方程的分析性和平滑效果”Math.Annalen(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWASHIMA Shuichi其他文献
KAWASHIMA Shuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWASHIMA Shuichi', 18)}}的其他基金
Entropy dissipative structure and mathematical analysis for complex fluids
复杂流体的熵耗散结构与数学分析
- 批准号:
18H01131 - 财政年份:2018
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability analysis for nonlinear partial differential equations
非线性偏微分方程的稳定性分析
- 批准号:
22244009 - 财政年份:2010
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Historical Studies on the Formation of autonomous Governance Structure of the European Communities : Re-examination of Political Cooperation, Agricultural and Industrial Policy
欧洲共同体自治治理结构形成的历史研究:政治合作、农业和工业政策的重新审视
- 批准号:
21730142 - 财政年份:2009
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Characterization of dissipative structure for partial differential equations and application to the nonlinear stability analysis
偏微分方程耗散结构的表征及其在非线性稳定性分析中的应用
- 批准号:
18340040 - 财政年份:2006
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic behavior of solutions and stability of nonlinear waves for equations of gas motion
气体运动方程解的渐近行为和非线性波的稳定性
- 批准号:
14340047 - 财政年份:2002
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the initial value problem for quasilinear hyperbolic-elliptic coupled systems
拟线性双曲椭圆耦合系统初值问题研究
- 批准号:
07454029 - 财政年份:1995
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




