Aerodynamics of flapping wings in forward flight

前飞时扑动机翼的空气动力学

基本信息

项目摘要

Flying insects are capable of both long-term hovering and high-degree of maneuvering with flapping wings. There have been a lot of studies on the flapping wings and their flight mechanics, bringing on a great improvement in the development of biomimetic drones. Nonetheless, it is still hard to say that the techniques accomplished so far are sufficient to describe the flapping-wing systems overall. Accordingly, the biomimetic drone development also has not jumped over a certain level. One notable issue in the recent trends in flapping-wing aerodynamics is that most studies still strongly confine own scopes to the hovering flight, despite the fact that staying particular point in space is very rare for most flying insects (they usually fly with a certain preferred – energy optimum – flight speed). The studies on the LEV also have heavily relied on the hovering state where a body stays at a fixed point and the wings move along the horizontal stroke plane without freestream. The advance ratio, which is also one primary element governing the LEV behavior, has been regarded as zero in these studies. Two distinctive kinematic features of flying insects in forward flight, i.e., the inclined and shifted-back stroke plane, which can significantly change the spanwise flow thereby impacting the LEV, have not yet been sufficiently investigated either. Few studies trying to reveal the effect of advance ratio had barely managed to report superficial things, because they relied on simplified motion profiles and marginally extended conditions from that in hover. A lack of such knowledge about forward flight brings on long-term stagnancy in aerodynamic model development. All the studies on flight dynamics are only able to cover near-hover maneuvers.With this program, this applicant proposes a thorough investigation on the aerodynamics of flapping wings in forward flight. The LEV characteristics on low-aspect-ratio flat plates at various kinematic and fluidic configurations in a fixed freestream will be explored in detail, and a novel aerodynamic model, which can encompass the LEV characteristics with respect to the advance ratio, aspect ratio, sweptback angle, and the angle of inclination of the stroke plane thereby being expandable to various flight modes, will be established. The flight stability analysis by using the aerodynamic model and morphological data of an example insect will also follow. This will give us better insights on the stability and controllability in forward flight.
飞行的昆虫既能长时间盘旋,又能通过拍动翅膀进行高度机动。人们对扑翼及其飞行力学进行了大量的研究,为仿生无人机的发展带来了很大的进步。尽管如此,仍然很难说到目前为止所完成的技术足以描述整个扑翼系统。因此,仿生无人机的发展还没有跨越一定的台阶。在扑翼空气动力学的最新趋势中,一个值得注意的问题是大多数研究仍然强烈地将自己的范围限制在悬停飞行中,尽管对于大多数飞行昆虫来说,在空间中停留特定点是非常罕见的(它们通常以一定的优选能量最佳飞行速度飞行)。对LEV的研究也严重依赖于悬停状态,其中身体停留在一个固定的点上,而机翼沿着水平行程平面移动而没有自由飞行。在这些研究中,前进比也是控制LEV行为的主要因素之一,被认为是零。飞行昆虫向前飞行的两个明显的运动学特征,即,倾斜的和向后移动的冲程平面也没有得到充分的研究,该冲程平面可以显著地改变展向流动,从而影响LEV。很少有研究试图揭示前进比的影响,几乎没有设法报告表面的东西,因为他们依赖于简化的运动剖面和略微扩展的条件,从悬停。对前向飞行缺乏这样的认识,导致了空气动力学模型发展的长期停滞。所有关于飞行动力学的研究都只能涵盖近悬停机动,通过本项目,申请人提出对扑翼前飞的空气动力学进行深入研究。本文将详细研究在固定自由高度上,不同运动学和流体学构型下,低展弦比平板上的LEV特性,并建立一种新的气动模型,该模型可以包含LEV在前进比、展弦比、后掠角和冲程平面倾角等方面的特性,从而可以扩展到各种飞行模式。此外,还将利用一个昆虫实例的空气动力学模型和形态学数据进行飞行稳定性分析。这将使我们更好地了解前飞的稳定性和可控性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Jong-Seob Han其他文献

Dr.-Ing. Jong-Seob Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

水下平面射流振翅运动与频率锁定现象
  • 批准号:
    10472046
  • 批准年份:
    2004
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Insect-inspired flapping wing robots: autonomous flight control systems
受昆虫启发的扑翼机器人:自主飞行控制系统
  • 批准号:
    DP240101140
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Exploiting fully coupled fluid-structure interaction: optimal wing heterogeneity and efficient flow state estimation in flapping flight
利用完全耦合的流固相互作用:扑翼飞行中的最佳机翼异质性和有效的流动状态估计
  • 批准号:
    2320875
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Energy efficiency of flapping flight: understanding and exploitation
扑动飞行的能量效率:理解和利用
  • 批准号:
    2889142
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Insect-scale Flapping-Wing Micro Aerial Robots Capable of Self-powered Hover and Agile Maneuvering
职业:昆虫规模扑翼微型空中机器人,具有自供电悬停和敏捷机动能力
  • 批准号:
    2236708
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Flapping Molecules for Local Force / Local Viscosity Imaging with Ultra-low Threshold
用于超低阈值局部力/局部粘度成像的扑动分子
  • 批准号:
    21H01917
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
  • 批准号:
    RGPIN-2021-02645
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Harnessing wind energy using a flapping aerofoil
利用扑动的机翼利用风能
  • 批准号:
    2590842
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Novel Framework for Model Reduction and Data-Driven Modeling of Fluid-Structure System: Application to Flapping Dynamics
流固系统模型简化和数据驱动建模的新框架:在扑动动力学中的应用
  • 批准号:
    RGPIN-2019-05065
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
ENERGY EXCHANGE BETWEEN FLUID AND FLAPPING/BENDING STRUCTURES
流体和扑动/弯曲结构之间的能量交换
  • 批准号:
    RGPIN-2015-05945
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了