A study of arithmetic varieties
算术品种研究
基本信息
- 批准号:14340013
- 负责人:
- 金额:$ 6.78万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator studied the cohomology theories for varieties of positive characteristic under the key words : tubular neighborhoods and cohomological descent. The contents are as follow ; (1)Construction of tubular neighborhoods of simplicial varieties, (2)Cohomological descent in rigid cohomology (partially collaborated with Chiarellotto), (3)Generic finiteness of relative rigid cohomology for proper and smooth morphisms, (4)Cohomological descent in de Rham cohomology and Hodge filtrations (collaborated with Chiarellotto), (5)Comparison map between rigid and de Rham cohomologies for simplicial families, and (6)Purity theorem for overconvergent isocrystals.Kato studied (1)Mumford curves and p-adic orbifolds with a covering which are Mumford curves (collaborated with Cornelissen), and (2)the foundations of rigid analytic spaces (collaborated with Fujiwara). Kimura studied the finite dimensionality of motives. Ito worked on algorithms of computing numbers of rational points of varieties over finite fields with the head investigator. Sugiyama studied (1)the BSD type problem in the Selberg Zeta functions for 3-dimentional manifolds and (2)a geometric analogue of Langlands correspondence. Shiho developed (1)the theory of crystalline fundamental group and (2)the theory of weights using logarithmic crystalline cohomology. Sumida studied several Iwasawa invariants for number fields. Taguchi had results on the finiteness of Galois representations with certain conditions (collaborated with Moon),. He also worked on the fast algorithm for computing numbers of rational points of elliptic curves over finite fields (collaborated with Sato),.
主要研究者在管状邻域和上同调下降的关键词下研究了各种正特征的上同调理论。主要内容如下:(1)单纯簇管状邻域的构造;(2)刚性上同调的上同调下降(部分与Chiarellotto合作),(3)正常态射和光滑态射的相对刚性上同调的通有有限性,(4)de Rham上同调和Hodge滤的上同调下降(与Chiarellotto合作),(5)单纯族的刚性和de Rham上同调之间的比较图,Kato研究了(1)Mumford曲线和覆盖为Mumford曲线的p-adic orbifold(与Cornelissen合作),(2)刚性解析空间的基础(与藤原合作)。木村研究了动机的有限维度。伊藤工作的算法计算数量合理点的品种在有限领域的首席调查员。杉山研究(1)BSD型问题的Selberg Zeta函数的三维流形和(2)几何模拟的朗兰兹对应。Shiho发展了(1)晶体基本群理论和(2)使用对数晶体上同调的权重理论。Sumida研究了数域的几个Iwasawa不变量。田口的结果有限的伽罗瓦表示与某些条件(与月亮),。他还致力于快速算法计算数量的合理点的椭圆曲线在有限领域(与佐藤),。
项目成果
期刊论文数量(76)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yuichiro Taguchi: "Induction formula for the Artin conductors of mod l Galois representations"Proceedings of American Mathematical Society. 130. 2865-2869 (2002)
Yuichiro Taguchi:“Mod l Galois 表示的 Artin 指挥的归纳公式”美国数学会会刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yuichiro Taguchi: "On potentially abelian geometric representations"Ramanujan Journal. (発表予定).
田口雄一郎:“论潜在的阿贝尔几何表示”拉马努金杂志(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Morphisms of $F$-isocrystals and the finite monodromy theorem for unit-root $F$-isocrystals
$F$-等晶的态射和单位根$F$-等晶的有限单向定理
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:黒川信重;栗原将人;齋藤毅;Nobuo Tsuzuki
- 通讯作者:Nobuo Tsuzuki
Non-archimedean orbifolds covered by mumford curves
- DOI:10.1090/s1056-3911-04-00384-4
- 发表时间:2005
- 期刊:
- 影响因子:1.8
- 作者:Fumiharu Kato
- 通讯作者:Fumiharu Kato
NOBUO TSUZUKI: "Morphisms of F -isocrystals and the finite monodromy theorem for unit-root F-isocristals"Duke Mathematical Journal. 111・3. 385-418 (2002)
NOBUO TSUZUKI:“F 等晶体的态射和单位根 F 等晶体的有限单向定理”杜克数学杂志 111・3 (2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUZUKI Nobuo其他文献
TSUZUKI Nobuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUZUKI Nobuo', 18)}}的其他基金
A experimental study of arithmetic local systems with geometric origins and unsolved problems in arithmetic geometry
具有几何起源的算术局部系统的实验研究和算术几何中未解决的问题
- 批准号:
15K13422 - 财政年份:2015
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Integral structures of arithmetic differential equations and geometries behind them
算术微分方程的积分结构及其背后的几何
- 批准号:
24654002 - 财政年份:2012
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A local and global study of arithmetic varieties determined by arithmetic differential equations
由算术微分方程确定的算术簇的局部和全局研究
- 批准号:
21654001 - 财政年份:2009
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A study of arithmetic varieties by p-adic methods
算术簇的 p-adic 方法研究
- 批准号:
17340008 - 财政年份:2005
- 资助金额:
$ 6.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)