Inverse Problems for the Family of Wave Equations

波动方程族反问题

基本信息

  • 批准号:
    14340038
  • 负责人:
  • 金额:
    $ 7.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

We studied identifying the discontinuity of the medium such as inclusions, cavities, cracks and the physical property of the medium. For identifying the discontinuity for the medium, we improved and adopted the probe method and enclosure method. Especially, we studied the behavior of the reflected solution and the unique continuation property which are essential for the probe method, and we accomplished the probe method. As for the enclosure method, we enlarged its application by replacing the complex geometric optic solution which is difficult to construct and localize by introducing the osciallating-decaying solution. We also showed that the reconstruction methods for the inverse boundary value problem such as the probe method, singular source method, no response test are unified into the no response test, and the probe method and singular source method are the same methods. For the inverse scattering problem, we solved the difficulty of the linear sampling method by proposing two new reconstruction methods. Moreover, we succeeded in establishing the probe method for the one space dimensional parabolic equation and giving the theoretical frame work for Shirota's computational method for identifying the discontinuity of the coefficient for the wave equation.As for identifying the physical property of the medium, we studied two inverse problems for identifying the residual stress and the damage of steel-concrete connected beam. We gave the dispersion formula of the speed of the Rayleigh wave and applied it for the former inverse problem. For the latter problem, we established identifying the damage from the frequency response function which is a practical measured data. We also studied identifying the coefficient for the nonlinear wave equation and succeeded in observing that we can identify the linear and the quadratic part of the coefficient by linearizing the Dirichlet to Neumann map.
研究了介质不连续性的识别,如夹杂、孔洞、裂纹等,以及介质的物理性质。为了识别介质的不连续性,我们改进并采用了探针法和封闭法。特别地,我们研究了探针法所必需的反射解的性质和唯一的连续性,实现了探针法。对于封闭方法,我们通过引入振荡衰减解来代替复杂的几何光学解,从而扩大了它的应用范围。证明了反边值问题的重构方法,如探针法、奇异源法、无响应检验法等统一为无响应检验法,探针法和奇异源法是同一种方法。对于逆散射问题,我们提出了两种新的重建方法,解决了线性采样方法的困难。此外,我们还成功地建立了一维抛物型方程的探测方法,为Shirota的波动方程系数不连续性识别的计算方法提供了理论框架;在介质物性识别方面,我们研究了钢-混凝土连接梁的残余应力和损伤识别的两个反问题。给出了瑞利波速度的频散公式,并将其应用于前一反问题。对于后一个问题,我们建立了从实测数据的频响函数来识别损伤的方法。我们还研究了非线性波动方程的系数识别,并成功地观察到,我们可以通过线性化Dirichlet到Neumann映射来识别系数的线性和二次部分。

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperbolic geometry and local Dirichlet–Neumann map
  • DOI:
    10.1016/j.aim.2003.10.006
  • 发表时间:
    2004-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    H. Isozaki;G. Uhlmann
  • 通讯作者:
    H. Isozaki;G. Uhlmann
Reconstruction of inclusions for the inverse houndary value problem with mixed boundary condition and source term
混合边界条件和源项的边界值反问题的包含体重构
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Fujima;K.Ohmori;Y.Daido
  • 通讯作者:
    Y.Daido
K.Kazumi: "Surface impedance tensors of textared polycrystals"Journal of Elasticity. 67・2. 131-147 (2003)
K.Kazumi:“纹理多晶的表面阻抗张量”弹性杂志67・2(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Inverse problems for elasticity
弹性反问题
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Kaneda;T.Ishihara;M.Yokokawa;K.Itakura;A.Uno;G.Nakamura
  • 通讯作者:
    G.Nakamura
J.Ching: "Recovery of the shape of an obstacle and the boundary impedance from the for field pattern"J.Math.Kyoto Univ.. 43・1. 165-186 (2003)
J.Ching:“从场模式恢复障碍物的形状和边界阻抗”J.Math.Kyoto Univ.. 43・1(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAMURA Gen其他文献

NAKAMURA Gen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAMURA Gen', 18)}}的其他基金

Study of Inverse Problems for Family of Elasticity Equations
弹性方程组反问题的研究
  • 批准号:
    22340023
  • 财政年份:
    2010
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Reconstruction schemes for inverse problems identifying unknown oefficients and boundaries for partial differential equations
识别偏微分方程未知效率和边界的反问题的重构方案
  • 批准号:
    19340028
  • 财政年份:
    2007
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
RECONSTRUCTION PROCEDURE FOR INVERSE PROBLEMS
逆问题的重构过程
  • 批准号:
    12640153
  • 财政年份:
    2000
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MATHEMATICAL ANALYSIS FOR INVERSE PROBLEMS IN CONTINUUM MECHANICS
连续力学反问题的数学分析
  • 批准号:
    10640152
  • 财政年份:
    1998
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Bioactive gas pump-probe method elucidates the relationship of nitric oxide diffusion with vascular function
生物活性气体泵探针法阐明一氧化氮扩散与血管功能的关系
  • 批准号:
    21K18192
  • 财政年份:
    2021
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Spatial distribution of micellar structure in drag-reducing surfactant solution flow clarified by fluorescence probe method
荧光探针法阐明减阻表面活性剂溶液流中胶束结构的空间分布
  • 批准号:
    16K06090
  • 财政年份:
    2016
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a probe method of measuring thermal conductivity by using ac heat current under multi-extreme condition
多极端条件下交流热电流测量导热系数探针法的研制
  • 批准号:
    15K13517
  • 财政年份:
    2015
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of a new spin probe method using the visible laser pulse
使用可见激光脉冲开发新的自旋探针方法
  • 批准号:
    25870123
  • 财政年份:
    2013
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of electron-phonon dynamics in coherent phonon fields by using a spectral-resolved pump-probe method
使用光谱分辨泵浦探针方法研究相干声子场中的电子声子动力学
  • 批准号:
    24654090
  • 财政年份:
    2012
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study on anisotropy and optimization of thermoelectric properties of thermoelectric materials by a Seebeck micro-probe method
塞贝克微探针法研究热电材料的各向异性及热电性能优化
  • 批准号:
    23560363
  • 财政年份:
    2011
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Milli-Kelvin Micro-Four-Point Probe Method andResearch of Monolayer Superconductors
毫开尔文微四点探针法的发展及单层超导体的研究
  • 批准号:
    22246006
  • 财政年份:
    2010
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Reliability evaluation of fluorescence probe method for molecular diffusion measurement in lipid bilayer by atomic force microscopy
原子力显微镜下脂质双层分子扩散测量荧光探针法的可靠性评价
  • 批准号:
    21810009
  • 财政年份:
    2009
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Three-dimensional mapping of electrical transport characteristics in organic semiconductors using independently-driven four-probe method
使用独立驱动的四探针方法三维绘制有机半导体中的电传输特性
  • 批准号:
    21760024
  • 财政年份:
    2009
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A study of in situ multi-radiation probe method for composition determination of solution
原位多辐射探针法测定溶液成分的研究
  • 批准号:
    20560716
  • 财政年份:
    2008
  • 资助金额:
    $ 7.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了