Research on Model-driven Adaptive Control Systems based on the Error of Closed-loop Parameters
基于闭环参数误差的模型驱动自适应控制系统研究
基本信息
- 批准号:14350225
- 负责人:
- 金额:$ 4.61万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the research is to formulate a new method of adaptive control called "Model-driven control" from a control theoretical point of view and to establish a theory for. analysis and synthesis as powerful control design framework. We have revealed significances and its properties of model-driven control architecture from theoretical and experimental aspects. A fundamental concept of model-driven control comes from a motor control of human. In this research, in order to provide new developments of method for dealing with "Complicated System" for both fields of adaptive control and motor control we tried the following three themes mainly (1) The formulation of model-driven adaptive control and the relation to motor control, (2) The establishment of identification method for complicated systems and the relation to learning control and (3) Control theoretical approaches to various nonlinear complicated systemsIn (1), we formulated a well-known "Feedback Error Learning method" as two-degrees of freedom control systems and investigated its closed-loop structure. A stability of the closed-loop system including adaptation and a convergence of its adaptation parameters were shown theoretically. Furthermore, these results were extended to a case where a time delay exists in the feedback loop. Each, result in (2) includes interest approaches to the essential difficulties for dealing with complicated systems. In (3), we obtained various outcomes which related to various complicated system, e.g., nonlinear robot arm, a hear exchanger in a fuel cell, control biology, biomechanics of human motor control, quantum control systems, a large scale network system and so on. In particular, results on control biology and quantum control system moved forward the frontier of new field in control theory.
本文的研究目的是从控制理论的角度出发,提出一种新的自适应控制方法,即“模型驱动控制”,并为自适应控制系统的设计提供理论基础。分析和综合作为强大的控制设计框架。从理论和实验两个方面揭示了模型驱动控制体系结构的意义及其特性。模型驱动控制的一个基本概念来自于人类的运动控制。在本研究中,为了给自适应控制和电机控制领域提供处理“复杂系统”方法的新发展,我们主要尝试了以下三个主题:(1)模型驱动自适应控制的形式及其与电机控制的关系;(2)复杂系统辨识方法的建立及其与学习控制的关系;各种非线性复杂系统的控制理论方法在(1)中,我们将著名的“反馈误差学习方法”表述为二自由度控制系统,并研究了其闭环结构。从理论上证明了包含自适应的闭环系统的稳定性及其自适应参数的收敛性。此外,这些结果被扩展到的情况下,在反馈回路中存在的时间延迟。(2)中的每一个结果都包含了处理复杂系统的基本困难的有趣方法。在(3)中,我们得到了与各种复杂系统相关的各种结果,例如,非线性机械臂、燃料电池中的热交换器、控制生物学、人体运动控制的生物力学、量子控制系统、大规模网络系统等,特别是控制生物学和量子控制系统的研究成果推动了控制理论新领域的发展。
项目成果
期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中山学之, 木村英紀: "脊髄伸張反射機構と小脳の計算モデルを結合した制御系によるロボットの軌道追従制御"電子情報通信学会論文誌DII. J86-D-II,7. 1078-1089 (2003)
Manabu Nakayama、Hideki Kimura:“使用结合脊髓牵张反射机制和小脑计算模型的控制系统对机器人进行轨迹跟踪控制”IEICE Transactions DII,7. 1078-1089 (2003) )
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Yanagisawa, H.Kimura: "Recursive estimation methods for discrete systems Part I : Dynamics of Quantum Feedback Systems"IEEE Transact ions on Automatic Control. Vol.48, No.12. 2107-2120 (2003)
M.Yanagisawa、H.Kimura:“离散系统的递归估计方法第一部分:量子反馈系统的动力学”IEEE 自动控制交易。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Oishi, H.Kimura: "Computational Complexity of Randomized Algorithms for Solving Parameter-dependent Linear Matrix Inequality"Automatica. Vol.39. 2149-2156 (2003)
Y.Oishi、H.Kimura:“求解参数相关线性矩阵不等式的随机算法的计算复杂性”Automatica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Kimura: "Integration of Modeling and Control Through Model-driven Control"The 1st SICE Annual Conference. 2677-2678 (2002)
H.Kimura:“通过模型驱动控制实现建模与控制的集成”第一届 SICE 年会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Terashita, H.Kimura: "Robustness of Feedback Error Learning Method with Time Delay"The 1st SICE Annual Conference. 1835-1839 (2002)
J.Terashita、H.Kimura:“具有时滞的反馈误差学习方法的鲁棒性”第一届 SICE 年会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIMURA Hidenori其他文献
KIMURA Hidenori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIMURA Hidenori', 18)}}的其他基金
A Study of the Mechanism of Biological Compound Control and its Applications to Engineering Systems
生物复合控制机理及其在工程系统中的应用研究
- 批准号:
18360204 - 财政年份:2006
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Model Set and Time-Varying Control based on Complexity
基于复杂度的模型集与时变控制分析
- 批准号:
11450164 - 财政年份:1999
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
System Theory and Control of Model Sets
系统理论与模型集控制
- 批准号:
07455172 - 财政年份:1995
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic Research on Visual Servo System which Dynamically Combines the Position/Force Control and Environment Recognition
位置/力控制与环境识别动态结合的视觉伺服系统基础研究
- 批准号:
04452157 - 财政年份:1992
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Study of the possibility, method and design of control based on imperfect model
基于不完美模型控制的可能性、方法及设计研究
- 批准号:
02302050 - 财政年份:1990
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Basic Research of Visual Servo which Dynamically Combines Environment Recognition to Motion Control
环境识别与运动控制动态结合的视觉伺服基础研究
- 批准号:
01460125 - 财政年份:1989
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Synthesis of robust control systems based on the unification of modelling and design
基于建模与设计统一的鲁棒控制系统综合
- 批准号:
60550297 - 财政年份:1985
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
CPS: Small: Learning How to Control: A Meta-Learning Approach for the Adaptive Control of Cyber-Physical Systems
CPS:小:学习如何控制:网络物理系统自适应控制的元学习方法
- 批准号:
2228092 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Travel: New Statistical Physics of Living Matter: non-equilibrium states under adaptive control
旅行:生命物质的新统计物理学:自适应控制下的非平衡态
- 批准号:
2326439 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
- 批准号:
2890822 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Studentship
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
- 批准号:
2230971 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Atomic resolution imaging using quantum sensors enabled by smart adaptive control
使用智能自适应控制启用的量子传感器进行原子分辨率成像
- 批准号:
2890685 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Studentship
Cross-Layer Energy Optimization with Adaptive Control for Ultra-Low Power IoT Sensor Nodes
针对超低功耗物联网传感器节点的跨层能量优化和自适应控制
- 批准号:
23K11026 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unification of gain-scheduled and adaptive control theories and its application to practical systems
增益调度和自适应控制理论的统一及其在实际系统中的应用
- 批准号:
22H01512 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
- 批准号:
RGPIN-2017-05367 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Grants Program - Individual
Distributionally Robust Adaptive Control: Enabling Safe and Robust Reinforcement Learning
分布式鲁棒自适应控制:实现安全鲁棒的强化学习
- 批准号:
2135925 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant