Prediction and compensation of subsequent deformation in robotbased incremental sheet forming by application of machine learning

应用机器学习预测和补偿基于机器人的增量板材成形中的后续变形

基本信息

项目摘要

Incremental sheet forming (ISF) is flexible, workpiece-independent process for manufacturing sheet metal parts in small lot sizes. An industrial application has yet rare or not all taken place due to the still low geometric accuracy of the process. The reason for this is mainly the missing possibility for a precise simulation of the forming process, hindering the use of compensation approaches for springback and subsequent deformation. While there are multiple FEM-based simulation approaches, their application is prevented by summing up simulation errors, caused by the incremental nature of the process. During the research project, a data driven approach will be pursued by the usage of machine learning, which, in contrast to FEM-simulations, does not need a detailed modelling of the forming process. A multi-layer artificial neural network (ANN) will be build up, predicting the resulting geometric accuracy of a forming experiment based on common process parameters, part geometry and the course of the tool path.To be able to train the ANN, a process database will be built up. A preferably wide spectrum of process data will be acquired in an experimental series, in which a systematically varied part will be formed and measured with alternated process parameters. By the this way generated wide range of the training data, a generalisation of the ANN is enabled making it applicable to any part.To take the influence of the part geometry on the resulting geometric accuracy into account, the part geometry will be transformed into a format with a fixed number of parameters which is therefore usable for machine learning. This is achieved by the development of several representation approaches whose performances are evaluated with a quality criterion. This assesses the quality of the approximation and correlation of the parameters of the geometry representation and the part geometry.Utilizing the built up process database and the developed geometry representation with the highest performance, a multi-layer ANN will be trained. Meanwhile its prediction performance is validated with a test dataset gathered in reference forming experiments. Afterwards the trained ANN is used to improve the geometric accuracy of a part by modifying the tool path based on the predicted geometric accuracy. To execute this, existing tool path planning approaches need to be extended as the data driven nature of the ANN can lead to rare prediction errors otherwise resulting in false tool paths.
增量板材成形(ISF)是一种灵活的、独立于工件的工艺,用于制造小批量金属板材零件。由于工艺的几何精度仍然很低,工业应用还很少或没有全部发生。其原因主要是缺少精确模拟成形过程的可能性,阻碍了回弹和后续变形补偿方法的使用。虽然有多种基于FEM的仿真方法,但由于过程的增量性质导致的仿真误差的总和,阻止了它们的应用。在研究项目期间,将通过使用机器学习来追求数据驱动的方法,与FEM模拟相比,机器学习不需要对成形过程进行详细建模。建立了一个多层人工神经网络(ANN),根据常用的工艺参数、零件几何形状和刀具轨迹,预测成形实验的几何精度。为了能够训练ANN,建立了一个工艺数据库。将在实验系列中获得优选宽范围的过程数据,其中将形成系统变化的部件并利用交替的过程参数进行测量。通过这种方式生成的训练数据范围广泛,使人工神经网络的泛化,使其适用于任何部分。考虑到部分几何形状对所得几何精度的影响,部分几何形状将被转换为具有固定数量的参数,因此可用于机器学习的格式。这是通过开发几种表示方法来实现的,这些方法的性能是用质量标准来评估的。这评估了几何表示和零件几何参数的近似和相关性的质量。利用建立的工艺数据库和开发的具有最高性能的几何表示,将训练多层ANN。同时,通过参考成形实验中收集的测试数据集验证了该方法的预测性能。然后,训练好的神经网络用于提高零件的几何精度,通过修改刀具路径的基础上预测的几何精度。为了执行这一点,现有的刀具路径规划方法需要扩展,因为ANN的数据驱动性质可能导致罕见的预测错误,否则会导致错误的刀具路径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Bernd Kuhlenkötter其他文献

Professor Dr.-Ing. Bernd Kuhlenkötter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Bernd Kuhlenkötter', 18)}}的其他基金

Modeling of a hyperheuristic approach within an agent system to support operational planning for industrial product service systems in the production environment
对代理系统内的超启发式方法进行建模,以支持生产环境中工业产品服务系统的运营规划
  • 批准号:
    424733996
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Robot-based incremental sheet forming - compensating for disturbances caused by a local heating and the inaccuracy of the metal forming device
基于机器人的增量板材成形 - 补偿由局部加热和金属成形设备的不准确性引起的干扰
  • 批准号:
    389056414
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Knowledge-based Planning for the Use of Exoskeletons
基于知识的外骨骼使用规划
  • 批准号:
    524694954
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-speed motion tracking and coupling for human-robot collaborative assembly tasks (HiSMoT)
用于人机协作装配任务的高速运动跟踪和耦合 (HiSMoT)
  • 批准号:
    500490184
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Use of machine learning methods for predicting the Remaining-Useful-Life of tools using the example of mandrel rolls in radial-axial ring rolling
使用机器学习方法以径向-轴向环材轧制中的芯轴辊为例来预测工具的剩余使用寿命
  • 批准号:
    464881255
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Prevention of defects during radial-axial rolling of rings based on online data analysis
基于在线数据分析的环件径向轴向轧制缺陷预防
  • 批准号:
    404517758
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Autonomous Measurement and Efficient Storage of Industrial Robot Motion Data
工业机器人运动数据的自主测量和高效存储
  • 批准号:
    515675259
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrated layout and path optimization of manufacturing cells
制造单元的集成布局和路径优化
  • 批准号:
    537603255
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
  • 批准号:
    10749672
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote ecosystem stability in response to drought
NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    NE/Y00549X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Naturalistic Social Communication in Autistic Females: Identification of Speech Prosody Markers
自闭症女性的自然社交沟通:语音韵律标记的识别
  • 批准号:
    10823000
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312707
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
A Study on Implementation Method of Highly Efficient Motion Compensation Prediction Scheme Using DNN in Video Coding
视频编码中DNN高效运动补偿预测方案的实现方法研究
  • 批准号:
    23K03843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
  • 批准号:
    10637293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
  • 批准号:
    10638439
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了