Use of machine learning methods for predicting the Remaining-Useful-Life of tools using the example of mandrel rolls in radial-axial ring rolling
使用机器学习方法以径向-轴向环材轧制中的芯轴辊为例来预测工具的剩余使用寿命
基本信息
- 批准号:464881255
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For many machines and plants in all branches of industry, seamless ring-shaped components with high requirement specifications, such as high dynamic load capacity and high variability, are required. For the production of such components, radial-axial ring rolling (RARR) is the most important process. With RARR, rings of 100 mm up to 16 m in outer diameter, up to 4 m in ring height and component weights of up to 300 t can be produced. Despite a long research history in ring rolling with many successes, there is still a need for research in the field of predicting mandrel roll fracture. At present, mandrel roll breakage occurs unpredictably and without a directly identifiable cause and can occur up to once per shift, depending on the ring-rolling machine and capacity utilisation. Mandrel roll breakage leads to production downtime, defective rings and unplanned maintenance work, resulting in increased production time and rising costs. As a large number of influencing factors and the non-linear dependencies between them preclude the use of proven investigations to determine qualitative and quantitative influences, as shown in a study by thyssenkrupp Rothe Erde (tkRE) referred to in the preparatory work, machine learning (ML) is used to address this problem. The multidimensional nature of the problem and the non-linear influences make this method particularly suitable, since current algorithms, especially those from the field of deep neural networks, can demonstrate significant success in solving complex problems in a wide range of disciplines. However, the use of ML also creates new challenges, since without a suitable database the use of ML fails. At the same time, data acquisition without domain-specific knowledge is not effective. In this research project, therefore, a plant-independent data acquisition concept for the use of data-driven analysis methods on the one hand, and the foundations for a Remaining-Useful-Life (RUL) model of the mandrel roll in RARR using ML on the other hand are being developed. In order to sufficiently elaborate these two goals, first of all an analysis of the influencing variables for the mandrel roll fracture is carried out. Subsequently, a sensor concept will be developed and extensive sensor technology will be installed at a production plant with a sufficiently large and variable production volume. For a prototypical implementation, the ring roll machine of the Chair of Production Systems can be used within the project, whereby the actual data acquisition is carried out at two industrial companies (tkRE, Schmiedewerke Gröditz). This guarantees a wide range of rolling operations. The data recorded in this way are processed syntactically and semantically and evaluated by means of machine learning methods, so that in the end a regression model for predicting the RUL of a mandrel roll is validated.
对于工业各行各业的许多机器和工厂,要求具有高动载能力和高变化性等高要求的无缝环形件。对于这类零件的生产,径向-轴向环件轧制是最重要的工序。使用RARR,可以生产外径100 mm到16米、环高4米和部件重量300吨的环。尽管环件轧制的研究历史很长,取得了许多成功,但在芯棒轧辊断裂预测方面仍有研究的需要。目前,芯棒轧辊断裂是不可预测的,没有直接可识别的原因,根据轧环机和产能利用率的不同,每个班次最多可能发生一次。芯棒轧辊断裂导致生产停机、钢圈缺陷和计划外维护工作,导致生产时间延长,成本上升。正如蒂森克虏伯公司(ThyssenKrupp Rothe Erde,tkRE)在准备工作中提到的一项研究所表明的那样,由于大量的影响因素及其之间的非线性相关性,无法使用经过验证的调查来确定定性和定量的影响,因此使用机器学习(ML)来解决这一问题。问题的多维性质和非线性影响使该方法特别适合,因为当前的算法,特别是来自深度神经网络领域的算法,可以在解决广泛学科的复杂问题方面表现出巨大的成功。然而,ML的使用也带来了新的挑战,因为如果没有合适的数据库,ML的使用就会失败。同时,没有特定领域知识的数据采集是不有效的。因此,在这个研究项目中,一方面正在开发一种与工厂无关的数据采集概念,以使用数据驱动分析方法,另一方面正在开发使用ML的芯棒轧辊剩余使用寿命(RUL)模型的基础。为了充分阐述这两个目标,首先对芯棒辊断裂的影响因素进行了分析。随后,将开发传感器概念,并将在生产量足够大和可变的生产工厂安装广泛的传感器技术。作为一个原型实施,生产系统主席的环辊机可以在项目中使用,从而在两个工业公司(tkRE、Schmiedewerke Gröditz)进行实际数据采集。这保证了广泛的轧制作业。对记录的数据进行句法和语义处理,并利用机器学习方法进行评估,最终验证了预测芯棒轧辊RUL的回归模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Bernd Kuhlenkötter其他文献
Professor Dr.-Ing. Bernd Kuhlenkötter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Bernd Kuhlenkötter', 18)}}的其他基金
Modeling of a hyperheuristic approach within an agent system to support operational planning for industrial product service systems in the production environment
对代理系统内的超启发式方法进行建模,以支持生产环境中工业产品服务系统的运营规划
- 批准号:
424733996 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Robot-based incremental sheet forming - compensating for disturbances caused by a local heating and the inaccuracy of the metal forming device
基于机器人的增量板材成形 - 补偿由局部加热和金属成形设备的不准确性引起的干扰
- 批准号:
389056414 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Knowledge-based Planning for the Use of Exoskeletons
基于知识的外骨骼使用规划
- 批准号:
524694954 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
High-speed motion tracking and coupling for human-robot collaborative assembly tasks (HiSMoT)
用于人机协作装配任务的高速运动跟踪和耦合 (HiSMoT)
- 批准号:
500490184 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Prevention of defects during radial-axial rolling of rings based on online data analysis
基于在线数据分析的环件径向轴向轧制缺陷预防
- 批准号:
404517758 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Prediction and compensation of subsequent deformation in robotbased incremental sheet forming by application of machine learning
应用机器学习预测和补偿基于机器人的增量板材成形中的后续变形
- 批准号:
457407945 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Autonomous Measurement and Efficient Storage of Industrial Robot Motion Data
工业机器人运动数据的自主测量和高效存储
- 批准号:
515675259 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Integrated layout and path optimization of manufacturing cells
制造单元的集成布局和路径优化
- 批准号:
537603255 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Investment Accelerator
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Anticoagulant use, safety, and effectiveness for venous thromboembolism prevention in inflammatory bowel disease patients
炎症性肠病患者预防静脉血栓栓塞的抗凝剂使用、安全性和有效性
- 批准号:
10887842 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mapping the Neurobiological Risks and Consequences of Alcohol Use in Adolescence and Across the Lifespan
绘制青春期和整个生命周期饮酒的神经生物学风险和后果
- 批准号:
10733406 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
- 批准号:
10619943 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Longitudinal neural fingerprinting of opioid-use trajectories
阿片类药物使用轨迹的纵向神经指纹图谱
- 批准号:
10805031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:
10739527 - 财政年份:2023
- 资助金额:
-- - 项目类别: