Autonomous Measurement and Efficient Storage of Industrial Robot Motion Data
工业机器人运动数据的自主测量和高效存储
基本信息
- 批准号:515675259
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The range of applications for industrial robots is manifold: Industrial robots are used for workpiece handling, as measuring equipment or for manufacturing. Especially in manufacturing (e.g. welding, milling, painting), the robot's motion has a direct influence on the process result. Due to the design and control characteristics of the robot, a realized motion path generally deviates from the planned path. Therefore, a detailed knowledge of the motion deviations is relevant for the realization, improvement and testing of robot-based production processes.Modern measuring systems enable the detection of the motion paths of industrial robots, which opens up a wide range of analysis possibilities to investigate or improve the suitability for certain processes. In practice, only specific measurements are usually carried out in a limited number of cases, and the measurement data on the robot motion behavior is usually not available. Even existing data, e.g. from the data sheets of robot manufacturers, can only be used to a limited extent, since no detailed information about their measurement is known. Therefore, for each individual application, a large number of measurements has to be carried out, which is very time-consuming and cost-intensive. There are no methods to support such measurement processes with automated systems that go beyond the measurement of individual standardized tests (e.g. according to ISO 9283). There are also no general methods for path evaluation. For this purpose, an allocation method for motion deviations - based on the Dynamic Time Warping method and developed in preliminary work - is to be adopted and further developed.By means of available optical measuring systems, an automatic measurement of robot motions is basically possible. Due to the large number of possible settings and boundary conditions for the robot motion, however, the number of possible experiments is theoretically infinite. Therefore, a measurement method needs to be developed, in which the individual test runs are planned and carried out automatically. The system is to decide independently on the basis of previous experiments, in which parameter space further tests are appropriate to obtain necessary information. Since individual specific parameters for describing the robot motion behaviour can only cover a limited range of application scenarios, the robot measurement data are to be stored in a database system. Within the scope of the project, the basis for a measurement database is thus to be created in which the recorded robot motion data are stored. The information contained in the database provides a comprehensive description of the robot motion behaviour. With a detailed database, which can always be extended by new measurement data, a wide range of application scenarios will be supported, in which time-consuming and cost-intensive individual measurements can be avoided.
工业机器人的应用范围是多方面的:工业机器人用于工件搬运、测量设备或制造。特别是在制造领域(如焊接、铣削、喷漆),机器人的运动对工艺结果有直接影响。由于机器人的设计和控制特性,实际的运动路径通常会偏离规划的路径。因此,详细了解运动偏差对于基于机器人的生产过程的实现、改进和测试至关重要。现代测量系统可以检测工业机器人的运动路径,从而为研究或改进某些过程的适用性提供了广泛的分析可能性。在实践中,通常只在有限的情况下进行特定的测量,并且通常无法获得机器人运动行为的测量数据。即使是现有的数据,例如根据机器人制造商的数据表,只能在有限的范围内使用,因为不知道有关其测量的详细信息。因此,对于每个单独的应用,都必须进行大量的测量,这是非常耗时且成本高昂的。除了单个标准化测试的测量(例如根据 ISO 9283)之外,没有任何方法可以使用自动化系统来支持此类测量过程。路径评估也没有通用的方法。为此,将采用并进一步开发一种基于动态时间规整方法并在前期工作中开发的运动偏差分配方法。通过可用的光学测量系统,机器人运动的自动测量基本上是可能的。然而,由于机器人运动有大量可能的设置和边界条件,理论上可能的实验数量是无限的。因此,需要开发一种测量方法,其中可以自动规划和执行各个测试运行。该系统应在先前实验的基础上独立决定,在哪些参数空间中进行适当的进一步测试以获得必要的信息。由于描述机器人运动行为的各个具体参数只能覆盖有限范围的应用场景,因此机器人测量数据需要存储在数据库系统中。在该项目范围内,将创建测量数据库的基础,其中存储记录的机器人运动数据。数据库中包含的信息提供了机器人运动行为的全面描述。详细的数据库可以随时通过新的测量数据进行扩展,从而支持广泛的应用场景,从而避免耗时且成本高昂的单独测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Bernd Kuhlenkötter其他文献
Professor Dr.-Ing. Bernd Kuhlenkötter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Bernd Kuhlenkötter', 18)}}的其他基金
Modeling of a hyperheuristic approach within an agent system to support operational planning for industrial product service systems in the production environment
对代理系统内的超启发式方法进行建模,以支持生产环境中工业产品服务系统的运营规划
- 批准号:
424733996 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Robot-based incremental sheet forming - compensating for disturbances caused by a local heating and the inaccuracy of the metal forming device
基于机器人的增量板材成形 - 补偿由局部加热和金属成形设备的不准确性引起的干扰
- 批准号:
389056414 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Knowledge-based Planning for the Use of Exoskeletons
基于知识的外骨骼使用规划
- 批准号:
524694954 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
High-speed motion tracking and coupling for human-robot collaborative assembly tasks (HiSMoT)
用于人机协作装配任务的高速运动跟踪和耦合 (HiSMoT)
- 批准号:
500490184 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Use of machine learning methods for predicting the Remaining-Useful-Life of tools using the example of mandrel rolls in radial-axial ring rolling
使用机器学习方法以径向-轴向环材轧制中的芯轴辊为例来预测工具的剩余使用寿命
- 批准号:
464881255 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Prevention of defects during radial-axial rolling of rings based on online data analysis
基于在线数据分析的环件径向轴向轧制缺陷预防
- 批准号:
404517758 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Prediction and compensation of subsequent deformation in robotbased incremental sheet forming by application of machine learning
应用机器学习预测和补偿基于机器人的增量板材成形中的后续变形
- 批准号:
457407945 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Integrated layout and path optimization of manufacturing cells
制造单元的集成布局和路径优化
- 批准号:
537603255 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Transferring Pharmacists' Safe and Efficient Dispensing Know-How: Identifying Reasons for Success of Proficient Pharmacists Based on Eye Gaze Measurement.
传授药剂师安全高效的配药知识:基于眼睛注视测量确定熟练药剂师成功的原因。
- 批准号:
23K04309 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
- 批准号:
23H01622 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficient measurement of noisy quantum processes for error mitigation
有效测量噪声量子过程以减少错误
- 批准号:
10075883 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Advanced techniques of on-machine cutter/part measurement and supplementary machining of out-of-tolerance features for accurate and efficient machining of 3-D printed complex workpieces
机上刀具/零件测量和超差特征补充加工的先进技术,可实现 3D 打印复杂工件的精确高效加工
- 批准号:
RGPIN-2020-06768 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of a safe and efficient electrical scalpel by real-time measurement of local tissue stiffness
通过实时测量局部组织硬度开发安全高效的电手术刀
- 批准号:
21K19894 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Advanced techniques of on-machine cutter/part measurement and supplementary machining of out-of-tolerance features for accurate and efficient machining of 3-D printed complex workpieces
机上刀具/零件测量和超差特征补充加工的先进技术,可实现 3D 打印复杂工件的精确高效加工
- 批准号:
RGPIN-2020-06768 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Advanced techniques of on-machine cutter/part measurement and supplementary machining of out-of-tolerance features for accurate and efficient machining of 3-D printed complex workpieces
机上刀具/零件测量和超差特征补充加工的先进技术,可实现 3D 打印复杂工件的精确高效加工
- 批准号:
RGPIN-2020-06768 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of a efficient measurement method for human brain function using MR spectroscopy
利用磁共振波谱法开发人脑功能的有效测量方法
- 批准号:
19K22963 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of a 3D cavity dosimeter and image analysis software for in-body invivo dose measurement of organs at risk to make radiotherapy safer for patients and more efficient for clinicians
开发 3D 腔剂量计和图像分析软件,用于对危险器官进行体内剂量测量,使放射治疗对患者更安全,对临床医生来说更高效
- 批准号:
104809 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative R&D
Development of the time-resolved photoemission measurement using the laser third harmonics generated by high efficient rare gas cell.
使用高效稀有气体电池产生的激光三次谐波开发时间分辨光电发射测量。
- 批准号:
19K03702 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




