Investigation of the of aerosol particle transport into liquids using an adaptive-optical measurement technique for highly-dynamic fluidic interfaces

使用高动态流体界面的自适应光学测量技术研究气溶胶颗粒向液体中的传输

基本信息

  • 批准号:
    459505672
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The separation of aerosol particles by a moving gas-liquid fluidic interface is central to a wide variety of industrial and natural applications, among which stand out air purification systems and precipitation scavenging. The particle size significantly affects the separation rate. The diffusion of particles in the nanometer range is largely dominated by molecular diffusion. In this regime, predictive models accurately estimate the separation rates. Model inaccuracy increases, however, significantly when the particle size ranges from 0.1 µm to 2.5 µm. In this impaction-dominated regime, the complex interplay between the flow dynamics on both sides of the fluidic interface and the particle inertia makes it difficult to develop suitable models.State-of-the-art separation models generally assume a spherical shape of the fluidic interface (be it an immersed gas bubble or a water droplet in air), thereby making it relatively easy to simulate the fluid–particle interactions. Such models fail however to account for the local change in the fluidic surface tension caused by the continuously adsorbing aerosols and the rapid deformations of the fluidic interface along with the associated change in the gas/liquid flow. Further advances in aerosol separation can only be achieved if the flow on both sides of the fluidic interface can be measured. Despite the continuous advancement of measurement techniques, optical measurements are still challenging since the light refraction off the fluctuating fluidic interface cause aberrations and severe measurement errors. To overcome this shortcoming, an adaptive optical system equipped with a real-time image correction algorithm is suggested for the first time. In this project, a three-dimensional particle tracking system comprising a deformable membrane mirror for aberration correction will eliminate the measurement errors attributed to the fluctuating fluidic interface.This measurement system will be deployed to measure the flow on both sides of the fluidic interface of a gas bubble rising in a capillary waterchannel and of a water drop exposed to a turbulent airflow. The flow patterns will be correlated with the aerosol separation rates measured both experimentally and numerically. In particular, it will be investigated whether enforcing the bubble deformation into a non-spherical shape leads to a higher deposition rate, thereby making the particle separation process more efficient. The results will lead to the development of an improved and reliable separation model accounting for the deformation of the fluidic interface and the associated flow changes. In the longer run, the findings can contribute to development of portable and re-usable filterless separation devices, which can for instance be used to efficiently separate virus or toxic particles from flue gases.
通过移动的气液流体界面分离气溶胶颗粒是各种工业和自然应用的核心,其中突出的应用包括空气净化系统和降水清除。颗粒大小对分离率有显著影响。纳米范围内粒子的扩散主要以分子扩散为主。在这种情况下,预测模型可以准确地估计分离率。然而,当颗粒尺寸在0.1~2.5µm之间时,模型的不准确性显著增加。在这种撞击为主的区域,流体界面两侧的流动动力学和颗粒惯性之间的复杂相互作用使得开发合适的模型变得困难。最新的分离模型通常假设流体界面为球形(无论是浸没的气泡还是空气中的水滴),从而使得模拟流体-颗粒相互作用变得相对容易。然而,这些模型不能解释由持续吸附的气溶胶引起的流体表面张力的局部变化,以及流体界面的快速变形以及相关的气液流动变化。只有在能够测量流体界面两侧的流动的情况下,才能在气溶胶分离方面取得进一步的进展。尽管测量技术不断进步,但光学测量仍然具有挑战性,因为波动的流体界面上的光折射会导致像差和严重的测量误差。为了克服这一缺点,首次提出了一种具有实时图像校正算法的自适应光学系统。在本项目中,一种包括用于像差校正的可变形膜镜的三维粒子跟踪系统将消除由于流体界面起伏引起的测量误差,该测量系统将用于测量毛细水通道中上升的气泡和暴露在湍流气流中的水滴在流体界面两侧的流动。流型将与实验和数值测量的气溶胶分离率相关联。特别是,将研究将气泡变形为非球形是否会导致更高的沉积速率,从而使颗粒分离过程更有效。这一结果将导致开发一种改进的、可靠的分离模型,该模型考虑了流体界面的变形和相关的流动变化。从长远来看,这些发现有助于开发便携式和可重复使用的无过滤分离设备,例如,可以用于有效地从废气中分离病毒或有毒颗粒。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Lars Büttner其他文献

Dr. Lars Büttner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Lars Büttner', 18)}}的其他基金

Monochromatic flow profile sensor with time division multiplexing and calibration models für fluids
具有时分复用和流体校准模型的单色流量剖面传感器
  • 批准号:
    326649696
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Ultrasound Measurement System with adaptive Sound Field for Turbulence Investigations in Liquid Metal Flows
用于液态金属流湍流研究的具有自适应声场的超声波测量系统
  • 批准号:
    224744747
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of the Interaction between Blade Tip Flow and Blade Vibrations in highly loaded axial compressors
高负载轴流压缩机叶尖流与叶片振动之间相互作用的研究
  • 批准号:
    231784390
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of thermal boundary layer dynamics in turbulent liquid metal convection by ultrasound localization microscopy of near-wall velocity fields and temperature measurements
通过近壁速度场和温度测量的超声定位显微镜研究湍流液态金属对流中的热边界层动力学
  • 批准号:
    512483557
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inhaled Aerosol Dosimetry: Advances, Applications, and Impacts on Risk Assessments and Therapeutics
吸入气溶胶剂量测定:进展、应用以及对风险评估和治疗的影响
  • 批准号:
    10752525
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Wearable Microsystem for Continuous Personalized Aerosol Exposure Assessment
用于连续个性化气溶胶暴露评估的可穿戴微系统
  • 批准号:
    10747130
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Stop pulmonary airleaks with a novel inhaled dry powder aerosol
使用新型吸入干粉气雾剂阻止肺部漏气
  • 批准号:
    10602342
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Impacts of Phase Separation and Particle Shape on Aerosol Optical Properties Measured using Single Particle Cavity Ring-Down Spectroscopy
相分离和颗粒形状对使用单颗粒腔衰荡光谱测量的气溶胶光学性质的影响
  • 批准号:
    2886474
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of high-speed interruption technology for DC arc by polymer ablation and aerosol particle mixing using water-absorbing polymer ablation
开发聚合物烧蚀直流电弧高速中断技术和吸水聚合物烧蚀气溶胶颗粒混合技术
  • 批准号:
    23K17744
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Experimental evaluation of aerosol particle deposition in the nasal region using a precision nasal model
使用精密鼻模型对鼻区气溶胶颗粒沉积进行实验评估
  • 批准号:
    23K11467
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
  • 批准号:
    10658610
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
  • 批准号:
    10239915
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Neurotoxic and neurodegenerative risks from chronic exposure to metal mixtures in e-cigarette aerosol
长期接触电子烟气溶胶中的金属混合物会产生神经毒性和神经退行性风险
  • 批准号:
    10883865
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了