Behavior of spatial critical points and zeros of solutions of partial differential equations
偏微分方程解的空间临界点和零点的行为
基本信息
- 批准号:12440042
- 负责人:
- 金额:$ 4.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Let Ω be a domain in the N-dimensional Euclidean space, and consider the initial-Dirichlet problem for initial data being a positive constant. Suppose that D is a domain satisfying the interior cone condition and D^^-⊂Ω. We considered the question how the boundary ∂D is a stationary isothermic surface of the solution, and obtained the following two theorems : (i) Let Ω be either a bounded domain or an exterior domain satisfying the exterior sphere condition. If ∂D is a stationary isothermic surface, then ∂Ω must be a sphere. (ii) Let Ω be an unbounded domain satisfying the uniform exterior sphere condition, and suppose that ∂Ω contains a nonempty open subset where the principal curvatures of ∂Ω with respect to the exterior normal direction to ∂Ω are nonnegative. Furthermore, assume that, for any r > 0, ∂Ω contains the graph over a (N -1)-dimensional ball with radius r > 0. If ∂D is a stationary isothermic surface, then ∂Ω must be either a hyperplane or two parallel hyperplanes.2. Th … More ere is a conjecture of Chamberland and Siegel (1997) concerning the hot spots of solutions of the heat equation. Let Ω be a bounded domain in the Euclidean space containing the origin, and consider the initial-Dirichlet problem for initial data being a positive constant. The conjecture stated that if the origin is a stationary hot spot, then Ω is invariant under the action of an essential subgroup G of orthogonal transformations. Concerning this conjecture, we obtained the following four theorems when the space dimension is two : (i) Let Ω be a triangle. If the origin is a stationary hot spot, then Ω must be an equilateral triangle centered at the origin. (ii) Let Ω be a convex quadrangle, then Ω must be a parallelogram centered at the origin. (iii) If the origin is a stationary hot spot, then Ω is not a non-convex quadrangle. (iv) Let Ω be a convex m-polygon ( m = 5 or 6 ). Suppose that the inscribed circle centered at the origin touches every side of Ω, and suppose that the origin is a stationary hot spot. Then, if m = 5, Ω must be a regular pentagon centered at the origin, and if m = 6, Ω must be invariant under the rotation of one of three angles, π/3, 2π/3, and π. Less
1. 令Ω为N维欧几里得空间中的域,并考虑初始狄利克雷问题,初始数据为正常数。假设D是满足内锥条件和D^^-⊂Ω的域。我们考虑了边界 ∂D 如何是解的平稳等温面的问题,并得到了以下两个定理: (i) 设 Ω 为有界域或满足外球条件的外域。如果 ∂D 是静止等温面,则 ∂Ω 必定是球体。 (ii) 令 Ω 为满足均匀外球条件的无界域,并假设 ∂Ω 包含非空开子集,其中 ∂Ω 相对于 ∂Ω 的外部法线方向的主曲率是非负的。此外,假设对于任何 r > 0,∂Ω 包含半径 r > 0 的 (N -1) 维球上的图。如果 ∂D 是静止等温面,则 ∂Ω 必须是一个超平面或两个平行超平面。 2.这是 Chamberland 和 Siegel (1997) 关于热方程解的热点的猜想。令 Ω 为包含原点的欧几里得空间中的有界域,并考虑初始狄利克雷问题,初始数据为正常数。该猜想指出,如果原点是静止热点,则 Ω 在正交变换的基本子群 G 的作用下保持不变。关于这个猜想,当空间维数为二时,我们得到以下四个定理: (i)设Ω为三角形。如果原点是静止热点,则 Ω 必须是以原点为中心的等边三角形。 (ii) 设 Ω 为凸四边形,则 Ω 必定是以原点为中心的平行四边形。 (iii) 如果原点是静止热点,则 Ω 不是非凸四边形。 (iv) 设 Ω 为凸 m 多边形( m = 5 或 6 )。假设以原点为中心的内切圆接触 Ω 的每一侧,并假设原点是静止热点。那么,如果 m = 5,则 Ω 必须是以原点为中心的正五边形,如果 m = 6,则 Ω 在 π/3、2π/3 和 π 三个角度之一的旋转下必须保持不变。较少的
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Sakaguchi: "Stationary critical points of the heat flow in spaces of constant curvature"Journal London, Mathematical Society. 63-2. 400-412 (2001)
S.Sakaguchi:“恒定曲率空间中热流的稳态临界点”伦敦杂志,数学会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Sakaguchi: "Behavior of spatial critical points and zeros of solutions of diffusion equations"Sugaku (Japanese). 54-3. 249-264 (2002)
S.Sakaguchi:“扩散方程的空间临界点和零点的行为”Sugaku(日语)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
坂口 茂: "拡散方程式の解の空間臨界点と零点の挙動"数学. 54・3. 249-264 (2002)
坂口茂:“扩散方程的空间临界点和零点的行为”54・3(2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Magnanini and S.Sakaguchi: "Matzoh ball soup : Heat conductors with a stationary isothermic surface"Annals of Mathematics. 156-3. 931-946 (2002)
R.Magnanini 和 S.Sakaguchi:“Matzoh 球汤:具有固定等温表面的热导体”数学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Sakaguchi: "Behavior of spatial critical points and zeros of solutions of diffusion equations"Sugaku Expositions (English translation). (to appear).
S.Sakaguchi:“扩散方程的空间临界点和零点的行为”Sugaku Expositions(英文翻译)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKAGUCHI Shigeru其他文献
On a two-phase overdetermined problem of Serrin type
Serrin型两相超定问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo;Cavallina Lorenzo - 通讯作者:
Cavallina Lorenzo
A local analysis of the radial configuration for the two-phase torsion problem in the ball
球内两相扭转问题径向结构的局部分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo;Cavallina Lorenzo;Cavallina Lorenzo;Cavallina Lorenzo - 通讯作者:
Cavallina Lorenzo
On a two-phase shape optimization problem and its related overdetermined problem
关于两相形状优化问题及其相关的超定问题
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
CAVALLINA Lorenzo;MAGNANINI Rolando;SAKAGUCHI Shigeru;CAVALLINA Lorenzo - 通讯作者:
CAVALLINA Lorenzo
SAKAGUCHI Shigeru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKAGUCHI Shigeru', 18)}}的其他基金
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
- 批准号:
18H01126 - 财政年份:2018
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Diffusion and Geometry of Domain
域的扩散和几何
- 批准号:
20340031 - 财政年份:2008
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Behavior of spatial critical points and level surfaces of solutions of partial differential equations and shapes of the solutions
偏微分方程解的空间临界点和水平面的行为以及解的形状
- 批准号:
15340047 - 财政年份:2003
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asympotic behaviors of spatial critical points and zeros of solutions of parabolic equations
抛物方程空间临界点和解零点的渐近行为
- 批准号:
10640175 - 财政年份:1998
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
- 批准号:
2311075 - 财政年份:2023
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
- 批准号:
2311073 - 财政年份:2023
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
- 批准号:
2311074 - 财政年份:2023
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Theranostic system for targeted, sustained-delivery with quantitative "hot spot" MPI of magnetic extracellular vesicles
通过磁性细胞外囊泡定量“热点”MPI 进行靶向、持续递送的治疗诊断系统
- 批准号:
10708939 - 财政年份:2022
- 资助金额:
$ 4.86万 - 项目类别:
Maximising plasma turbulence in the hot spot of inertial fusion targets
最大化惯性聚变目标热点的等离子体湍流
- 批准号:
2753844 - 财政年份:2022
- 资助金额:
$ 4.86万 - 项目类别:
Studentship
Theranostic system for targeted, sustained-delivery with quantitative "hot spot" MPI of magnetic extracellular vesicles
通过磁性细胞外囊泡定量“热点”MPI 进行靶向、持续递送的治疗诊断系统
- 批准号:
10573855 - 财政年份:2022
- 资助金额:
$ 4.86万 - 项目类别:
Research on rational stress calculation method for structural hot-spot stress based fatigue evaluation
基于疲劳评估的结构热点应力合理应力计算方法研究
- 批准号:
21K04233 - 财政年份:2021
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Determining How Plasma Spontaneously Develops a Localized Hot Spot That Radiates X-rays and Produces Related Dramatic Phenomena
确定等离子体如何自发形成辐射 X 射线的局部热点并产生相关的戏剧性现象
- 批准号:
2105492 - 财政年份:2021
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Elucidation of the molecular pathology of pulmonary arterial hypertension using murine model with hot-spot mutation of related genes
使用相关基因热点突变的小鼠模型阐明肺动脉高压的分子病理学
- 批准号:
20K17161 - 财政年份:2020
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification of mercury-exposed marine hot spot around Japan using seabirds
利用海鸟识别日本周围的汞暴露海洋热点
- 批准号:
20H04379 - 财政年份:2020
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




