Exploitation of Applications of Discrete Convex Analysis

离散凸分析应用的开发

基本信息

项目摘要

The main aim of this research project is to exploit applications of the theory of discrete convex analysis proposed by the head investigator in the last decade. In this research project, we obtained various results described below. All of the results are presented at refereed international conferences and/ or accepted for publications in international scientific journals.(1) In the area of mathematical economics we obtained three results as applications of discrete convex analysis. First of all, we developed a theory for economic equilibrium models with indivisible goods ; in particular, we investigated sufficient conditions for the existence of competitive equilibrium in an exchange economy with indivisible goods. Secondly, we provide new characterizations of M-convex functions which play a central role in discrete convex analysis. These characterizations are based on well-known concepts in mathematical economics such as the gross substitutes condition and the single improvement condition. Thirdly, we developed an algorithm for computing a competitive equilibrium in an exchange economy with indivisible goods. This algorithm is based on M-convex submodular flow problem which is an optimization problem in discrete convex analysis.(2) We showed a proximity theorem for M-convex function minimization and developed fast algorithms.(3) We discussed combinatorial structure in engineering system from the viewpoint of discrete convex analysis. In particular, we investigated the delta matroid parity problem with the aim of determining the solvability of electrical circuits, and developed an efficient algorithm.(4) We verified applicability of the algorithms in discrete convex analysis to several problems in operations research. Based on this result, we developed efficient algorithms for the network design problem and the max cut problem.
该研究项目的主要目的是利用首席研究员在过去十年中提出的离散凸分析理论的应用。在本研究项目中,我们获得了以下描述的各种结果。所有研究结果都在国际会议上发表,并/或在国际科学期刊上发表。(1)在数理经济学领域中,作为离散凸分析的应用,我们得到了三个结果。首先,我们发展了商品不可分的经济均衡模型的理论;特别地,我们研究了商品不可分的交换经济中竞争均衡存在的充分条件。其次,我们给出了在离散凸分析中起核心作用的M-凸函数的新刻画。这些刻画是基于数理经济学中的著名概念,如总替代条件和单一改进条件。第三,我们开发了一个算法,用于计算一个交换经济中的竞争均衡与不可分割的商品。该算法基于离散凸分析中的一个优化问题M-凸次模流问题。(2)给出了M-凸函数极小化的一个近似定理,并给出了快速算法。(3)从离散凸分析的观点出发,讨论了工程系统的组合结构。特别是,我们研究了delta拟阵奇偶问题,目的是确定电路的可解性,并开发了一种有效的算法。(4)我们验证了离散凸分析算法的适用性,在运筹学中的几个问题。基于这个结果,我们开发了有效的算法,网络设计问题和最大割问题。

项目成果

期刊论文数量(59)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Murota: "Discrete Convex Analysis"Kyoritsu Publishing Company. (2001)
K. Murota:《离散凸分析》共立出版公司。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Tamura: "Perfect (0,±1)-Matrices and Perfect Bidirected Graphs"Theoretical Computer Science. 235. 339-356 (2000)
A. Tamura:“完美 (0,±1) 矩阵和完美双向图”理论计算机科学 235. 339-356 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Murota, A.Tamura: "New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities"Discrete Applied Mathematics. (to appear). (2001)
K.Murota、A.Tamura:“M 凸函数的新特征及其在不可分性经济均衡模型中的应用”离散应用数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Matsui, T.Matsui: "NP-completeness for calculating power indices of weighted majority games"Theoretical Computer Science. 263. 305-310 (2001)
Y.Matsui、T.Matsui:“计算加权多数博弈功率指数的 NP 完整性”理论计算机科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Murota: "Algorithms in Discrete Convex Analysis"IEICE Transactions on Systems and Information. E83-D. 344-352 (2000)
K.Murota:“离散凸分析算法”IEICE Transactions on Systems and Information。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MUROTA Kazuo其他文献

MUROTA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MUROTA Kazuo', 18)}}的其他基金

Cross-Sectional Research of Discrete Convex Analysis
离散凸分析的横截面研究
  • 批准号:
    26280004
  • 财政年份:
    2014
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unified Optimization Theory by Discrete Convex Paradigm
离散凸范式的统一优化理论
  • 批准号:
    21360045
  • 财政年份:
    2009
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deepening and Expansion of Discrete Convexity Paradigm
离散凸范式的深化和扩展
  • 批准号:
    18360048
  • 财政年份:
    2006
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of Discrete Convexity Paradigm
离散凸范式的建立
  • 批准号:
    15360043
  • 财政年份:
    2003
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete Optimization Algorithms based on Discrete Convex Analysis
基于离散凸分析的离散优化算法
  • 批准号:
    10205212
  • 财政年份:
    1998
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Systems Analysis by Valuated Matroids
通过评估拟阵进行系统分析
  • 批准号:
    09450042
  • 财政年份:
    1997
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Harmonic Analysis on Some Non Locally Convex Function Spaces
一些非局部凸函数空间的调和分析
  • 批准号:
    7602267
  • 财政年份:
    1976
  • 资助金额:
    $ 4.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了