Discrete Optimization Algorithms based on Discrete Convex Analysis
基于离散凸分析的离散优化算法
基本信息
- 批准号:10205212
- 负责人:
- 金额:$ 3.71万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the area of nonlinear programming, the theory of convex analysis provides a unified framework for well-solved problems. In the area of discrete optimization, on the other hand, we do not have such a unified framework. Matroidal structure, however, is known to be a well-behaved structure in discrete optimization. The theory of "discrete convex analysis" is proposed by the head investigator with a view to capturing the continuous optimization and the discrete optimization from a common viewpoint. Discrete convex analysis is a theoretical framework connecting the theory of convex analysis and the theory of matroids.It is often the case that discrete optimization problems appearing in the real world do not have nice combinatorial structure such as matroids. Therefore, we need to use enumeration-type algorithms such as the branch-and-bound method or approximation algorithms such as meta heuristics. In either approach, it is essential to extract tractable part from the discrete structure … More of the problems to be solved. For example, it is often effective to extract network-like structure as subproblems when we solve general discrete optimization problems.The fundamental idea of our research is to extract certain structure which can be dealt with discrete convex analysis as subproblems when we solve general discrete optimization problems. We summarize the main results as follows :・The concepts of M-convex and L-convex functions play a central role in the framework of discrete convex analysis. We showed various properties of these functions.・We proposed efficient algorithms for the minimization of M-convex functions.・We extended the concepts of M-convex and L-convex functions defined over the integer lattice to functions over the real space.・We generalized the concepts of M-convex and L-convex functions to quasi M-convex/L-convex functions.・We obtained some results on the application of discrete convex analysis to economic equilibrium such as the equivalence of gross substitutes property and M-convexity. Less
在非线性规划领域,凸分析理论为解决问题提供了统一的框架。另一方面,在离散优化领域,我们没有这样一个统一的框架。然而,众所周知,拟阵结构在离散优化中是一种表现良好的结构。首席研究员提出了“离散凸分析”理论,旨在从共同的角度捕捉连续优化和离散优化。离散凸分析是连接凸分析理论和拟阵理论的一个理论框架。现实世界中出现的离散优化问题常常不具有拟阵等良好的组合结构。因此,我们需要使用分支定界法等枚举型算法或元启发式等近似算法。无论哪种方法,都必须从离散结构中提取易于处理的部分……更多要解决的问题。例如,在解决一般离散优化问题时,提取网络状结构作为子问题往往是有效的。我们研究的基本思想是在解决一般离散优化问题时,提取某些可以进行离散凸分析的结构作为子问题。我们将主要结果总结如下:·M凸函数和L凸函数的概念在离散凸分析框架中发挥着核心作用。我们展示了这些函数的各种性质。・我们提出了最小化 M 凸函数的有效算法。・我们将整数格上定义的 M 凸和 L 凸函数的概念扩展到实空间上的函数。・我们将 M 凸和 L 凸函数的概念推广到拟 M 凸/L 凸函数 ・我们得到了一些关于离散凸分析在经济均衡中的应用的结果,例如总替代性和M凸的等价性。较少的
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Tamura: "Perfect (0, ±1)-Matrices and Perfect Bidirected Graphs"Theoretical Computer Science. (掲載予定).
A. Tamura:“完美(0,±1)矩阵和完美双向图”理论计算机科学(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Murota,A.Shioura: "M.Convex Function on Generalized Polymatroid" Mathematics of Operations Research,to appear.
K.Murota、A.Shioura:“M.Convex Function on Generalized Polymaroid”运筹学数学,待发表。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Murota, K., Tamura, A.: "New Characterizations of M-convex Functions and Their Applications to Economic Equilibrium Models"Discrete Applied Mathematics. (to appear). (2002)
Murota, K.、Tamura, A.:“M 凸函数的新特征及其在经济均衡模型中的应用”离散应用数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. T. McCormick and A. Shioura: "Minimum Ratio Canceling is Oracle Polynomial for Linear Programming, but Not Strongly Polynomial, Even for Networks"Operations Research Letters. (掲載予定).
S. T. McCormick 和 A. Shioura:“最小比率取消是线性规划的 Oracle 多项式,但不是强多项式,即使对于网络也是如此”《运筹学快报》(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D. Furihata: "Finite Difference Schemes for (∂u)/(∂t) = (∂/(∂x))^α(δG)/(δu) That Inherit Energy Conservation or Dissipation Property"Journal of Computational Physics. 156. 181-205 (1999)
D. Furihata:“继承能量守恒或耗散性质的 (∂u)/(∂t) = (∂/(∂x))^α(δG)/(δu) 的有限差分方案”计算物理学杂志 156。 .181-205 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MUROTA Kazuo其他文献
MUROTA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MUROTA Kazuo', 18)}}的其他基金
Cross-Sectional Research of Discrete Convex Analysis
离散凸分析的横截面研究
- 批准号:
26280004 - 财政年份:2014
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unified Optimization Theory by Discrete Convex Paradigm
离散凸范式的统一优化理论
- 批准号:
21360045 - 财政年份:2009
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deepening and Expansion of Discrete Convexity Paradigm
离散凸范式的深化和扩展
- 批准号:
18360048 - 财政年份:2006
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Discrete Convexity Paradigm
离散凸范式的建立
- 批准号:
15360043 - 财政年份:2003
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploitation of Applications of Discrete Convex Analysis
离散凸分析应用的开发
- 批准号:
12450040 - 财政年份:2000
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systems Analysis by Valuated Matroids
通过评估拟阵进行系统分析
- 批准号:
09450042 - 财政年份:1997
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
- 批准号:
22KJ0717 - 财政年份:2023
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2022
- 资助金额:
$ 3.71万 - 项目类别:
Discovery Grants Program - Individual
Study of vector fields and development of convex analysis on complete geodesic spaces
矢量场的研究和完全测地空间凸分析的发展
- 批准号:
21K03316 - 财政年份:2021
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2021
- 资助金额:
$ 3.71万 - 项目类别:
Discovery Grants Program - Individual
Study of Nonlinear Functional Analysis based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析研究
- 批准号:
20K03660 - 财政年份:2020
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
- 批准号:
RGPIN-2020-06425 - 财政年份:2020
- 资助金额:
$ 3.71万 - 项目类别:
Discovery Grants Program - Individual
RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
- 批准号:
1819229 - 财政年份:2018
- 资助金额:
$ 3.71万 - 项目类别:
Standard Grant
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
- 批准号:
18K11177 - 财政年份:2018
- 资助金额:
$ 3.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Convex Analysis and Applications in Machine Learning
凸分析及其在机器学习中的应用
- 批准号:
512553-2017 - 财政年份:2017
- 资助金额:
$ 3.71万 - 项目类别:
University Undergraduate Student Research Awards
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
- 批准号:
216877-2013 - 财政年份:2017
- 资助金额:
$ 3.71万 - 项目类别:
Discovery Grants Program - Individual