Unified Optimization Theory by Discrete Convex Paradigm

离散凸范式的统一优化理论

基本信息

  • 批准号:
    21360045
  • 负责人:
  • 金额:
    $ 11.4万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A framework of discrete DC programming by discrete convex analysis
  • DOI:
    10.1007/s10107-014-0792-y
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Takanori Maehara;K. Murota
  • 通讯作者:
    Takanori Maehara;K. Murota
DCP (Discrete Convex Paradigm)
DCP(离散凸范式)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
離散凸最適化ソルバとデモンストレーションソフトウェアの公開
发布离散凸优化求解器和演示软件
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    土村展之;森口聡子;垣村尚徳;岩田覚;室田一雄
  • 通讯作者:
    室田一雄
離散ヘッセ行列と凸拡張可能性に関する注意
关于离散 Hessians 和凸可扩展性的注释
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森口聡子;室田一雄
  • 通讯作者:
    室田一雄
Neighbor Systems, Jump Systems, and Bisubmodular Polyhedra
邻域系统、跳跃系统和双子模多面体
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kobayashi;Y. Toku and M. Muraoka;塩浦昭義
  • 通讯作者:
    塩浦昭義
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MUROTA Kazuo其他文献

MUROTA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MUROTA Kazuo', 18)}}的其他基金

Cross-Sectional Research of Discrete Convex Analysis
离散凸分析的横截面研究
  • 批准号:
    26280004
  • 财政年份:
    2014
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deepening and Expansion of Discrete Convexity Paradigm
离散凸范式的深化和扩展
  • 批准号:
    18360048
  • 财政年份:
    2006
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishment of Discrete Convexity Paradigm
离散凸范式的建立
  • 批准号:
    15360043
  • 财政年份:
    2003
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploitation of Applications of Discrete Convex Analysis
离散凸分析应用的开发
  • 批准号:
    12450040
  • 财政年份:
    2000
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete Optimization Algorithms based on Discrete Convex Analysis
基于离散凸分析的离散优化算法
  • 批准号:
    10205212
  • 财政年份:
    1998
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Systems Analysis by Valuated Matroids
通过评估拟阵进行系统分析
  • 批准号:
    09450042
  • 财政年份:
    1997
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

複数の離散凸関数に対する最小化アルゴリズムの研究
多个离散凸函数的最小化算法研究
  • 批准号:
    23K16842
  • 财政年份:
    2023
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
M凸関数最小化問題に対する高性能近似アルゴリズムの構築
M凸函数最小化问题的高性能逼近算法的构建
  • 批准号:
    21K21290
  • 财政年份:
    2021
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
組合せ凸関数理論の構築と組合せ最適化問題に対する非線形計画アプローチの研究
组合凸函数理论的构建及组合优化问题的非线性规划方法研究
  • 批准号:
    13740079
  • 财政年份:
    2001
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ケーラー多様体上の有界な q-擬凸関数についての研究
卡勒流形上有界q-伪凸函数的研究
  • 批准号:
    09740116
  • 财政年份:
    1997
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
複素多様体上のq-擬凸関数についての研究
复流形上q-伪凸函数的研究
  • 批准号:
    08740092
  • 财政年份:
    1996
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ケーラー多様体上のq-擬凸領域とq-擬凸関数についての研究
卡勒流形上的q伪凸区域和q伪凸函数研究
  • 批准号:
    05740086
  • 财政年份:
    1993
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
一般化された凸関数による近似
广义凸函数逼近
  • 批准号:
    02740087
  • 财政年份:
    1990
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了