NSF-DFG Echem: Mechanistic interrogation of electrocatalytic hydrogen evolution by an artificial hydrogenase

NSF-DFG Echem:人工氢化酶电催化析氢的机制研究

基本信息

项目摘要

The development of catalysts that can efficiently convert electrochemical energy into sustainable fuels such as H2 represents a critical obstacle that must be overcome in order to replace fossil fuels with environmentally friendly alternatives. Nature’s catalysts for hydrogen conversion, enzymes known as hydrogenases, exhibit an unparalleled degree of activity; despite global efforts, no sustainable synthetic catalyst has yet been developed that is comparable in rate and efficiency to the natural hydrogenases. Unfortunately, H2 evolution by microorganisms hinges not only on the hydrogenases, but the downstream interactions of these enzymes with other cellular components, limiting practical application of the natural systems. However, decades of study on hydrogenases have provided substantial understanding of the enzyme properties as well as the catalytic mechanism, revealing key features that are necessary for function. We are now well-positioned to build from this solid foundation and apply these general design principles to construct an optimized catalytic system for effective electrochemical energy conversion.Our approach to catalyst design focuses on the development of a robust, artificial hydrogenase enzyme that is integrated within an electrochemical architecture. Using a model metalloenzyme as a well-defined scaffold, we will incorporate select molecular complexes as intramolecular electron relays to functionally model the native redox-active cofactors and establish their role in electrocatalysis. The hybrid enzyme will be anchored onto an electrode surface, which acts as the electron transfer partner, and system variables that impact interfacial charge transfer will be probed. The specific objectives of the research program are to 1) design and implement strategies for integration of the individual components; 2) apply novel in situ spectroelectrochemical studies to interrogate the mechanism of H2 evolution by the hybrid contructs; 3) optimize the systems by tuning secondary and outer sphere properties to enhance catalytic efficiencies. By identifying the role that each component plays in catalysis, sluggish steps will be improved upon and unproductive or degradative pathways can be eradicated to systematically improve the catalytic system. While initially applied to the study of H2 production, the design principles obtained from these fundamental studies will be broadly applicable to the generation of scalable materials for electrochemical energy storage, including water oxidation, nitrogen fixation, and CO2 reduction.
开发能够有效地将电化学能量转化为可持续燃料(如H2)的催化剂是用环境友好型替代品取代化石燃料必须克服的一个关键障碍。自然界中氢转化的催化剂——被称为氢化酶的酶,表现出无与伦比的活性;尽管全球都在努力,但目前还没有开发出在速度和效率上可与天然氢化酶相媲美的可持续合成催化剂。不幸的是,微生物的H2进化不仅取决于氢化酶,还取决于这些酶与其他细胞成分的下游相互作用,限制了自然系统的实际应用。然而,几十年来对氢化酶的研究已经对酶的性质和催化机制有了实质性的了解,揭示了功能所必需的关键特征。我们现在有能力在这个坚实的基础上,应用这些一般的设计原则来构建一个优化的催化系统,以实现有效的电化学能量转换。我们的催化剂设计方法侧重于开发一种强大的人工氢化酶,该酶集成在电化学结构中。使用金属酶模型作为明确定义的支架,我们将结合选择的分子复合物作为分子内电子继电器,对天然氧化还原活性辅助因子进行功能建模,并确定它们在电催化中的作用。混合酶将被固定在电极表面,作为电子转移伙伴,并将探索影响界面电荷转移的系统变量。研究计划的具体目标是:1)设计和实施整合各个组件的策略;2)应用新的原位光谱电化学研究来探究混合结构中H2的演化机制;3)通过调整二级和外球性质来优化系统,以提高催化效率。通过确定每个组分在催化中所起的作用,可以改进缓慢的步骤,消除非生产性或降解途径,从而系统地改进催化系统。虽然最初应用于氢气生产的研究,但从这些基础研究中获得的设计原则将广泛适用于可扩展的电化学储能材料的产生,包括水氧化、固氮和二氧化碳还原。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Corinna Hess其他文献

Professorin Dr. Corinna Hess的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Corinna Hess', 18)}}的其他基金

Earth-Abundant Macrocyclic Metal Complexes for Photoredox Catalysis
用于光氧化还原催化的地球丰富的大环金属配合物
  • 批准号:
    426785626
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bio-inspired Assemblies for Small Molecule Activation and Photoredox Catalysis
用于小分子活化和光氧化还原催化的仿生组件
  • 批准号:
    507868493
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Grants

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2346885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Electrochemically enhanced low-temperature catalytic ammonia synthesis
NSF-DFG Echem:电化学增强低温催化氨合成
  • 批准号:
    2140971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Proposal: NSF-DFG Echem: Understanding the Mechanism of Urea Oxidation on Nickel-Based Electrocatalysts
合作提案:NSF-DFG Echem:了解镍基电催化剂上尿素氧化的机制
  • 批准号:
    2054933
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Synergistic Experimental and Computational Approaches to Designing Electrocatalysts with Proton-Responsive Ligand Architectures
NSF-DFG Echem:CAS:设计具有质子响应配体结构的电催化剂的协同实验和计算方法
  • 批准号:
    2055097
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Operando Electronic Structure Determination of Iron and its Time-Dependent Dynamics in FexNi100-x(OH)y Electrooxidation Catalysts
NSF-DFG Echem:FexNi100-x(OH)y 电氧化催化剂中铁的操作电子结构测定及其随时间变化的动力学
  • 批准号:
    2055245
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-DFG Echem: CAS: Cooperativity Between Immobilized Redox Mediators for Selective Anodic Biomass Valorization
NSF-DFG Echem:CAS:固定化氧化还原介体之间的协同作用,用于选择性阳极生物质增值
  • 批准号:
    2055689
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Elucidating Surface Structure Contribution of Facets, Steps and Kinks in Electrocatalysis of the Oxygen Evolution and Reduction Reactions
NSF-DFG Echem:阐明面、台阶和扭结在析氧和还原反应电催化中的表面结构贡献
  • 批准号:
    2139971
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Echem: Design of Nanostructured Noble - Metal Chalcogenide Electrocatalysts for Hydrogen Evolution Reaction
NSF-DFG Echem:用于析氢反应的纳米结构贵金属硫属化物电催化剂的设计
  • 批准号:
    2140038
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG EChem: CAS: Mechanistic Interrogation of Electrocatalytic Hydrogen Evolution by an Artificial Hydrogenase
NSF-DFG EChem:CAS:人工氢化酶电催化析氢的机械询问
  • 批准号:
    2140211
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了