The flag variety of elliptic Lie algebra and elliptic primitive automorphic forms
椭圆李代数和椭圆本原自守形式的标志簇
基本信息
- 批准号:13440021
- 负责人:
- 金额:$ 5.44万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main purpose of the present research program is to describe the period map associated to an integral of a primitive form in terms of Lie theory.I. Subject related to elliptic Lie algebra and elliptic Lie groups.1. The construction of the highest weight representation theory for elliptic algebras: even though elliptic algebras are not Kac-Moody algebras, by replacing the Cartan subalgebra by a Heisenberg algebra, we can construct the infinite dimensional highest weight representation. Since the radical is infinite dimensional and create a non-commutative algebra, we develop a new, concept, called the block algebra.2. Bruhat-Tits decomposition of elliptic Lie groups: owing to the above 1., we know that there are ample representations, and we can introduce the elliptic group by the inverse limit of integrable representations. The normalizer of its maximal torus is an extension by the elliptic Weyl group by the torus. Even though the elliptic Weyl group is not a Coxeter group, we show … More for the elliptic Lie group admits the Bruhat-Tits decomposition.3.The Fourier coefficients of the eta-products attached to the characteristic polynomial of the elliptic Coxeter element are non-negative if and only if the corresponding Weyl group invariant ring admit the flat structure, that is: the cases D^<(1,1)>_4, E^<(1,1)>_6, E^<(1,1)>_7 and E^<(1,1)>_8.II. Subject related to classical finite root systems.1. The flat structure on finite reflection groups (reconstruction of the theory, Hodge filtration, Fourier transformation and the uniformization equation (Gauss-Manin connection), the relation with the Frobenius manifold structure, special solutions by means of periodd integrals of the primitive form for odd dimensional fibration, the the monodromy group in the symplectic group, a conjecture on the period domain, a conjecture on Eisenstein series and on discriminant forms, a conjecture on the power root of the discriminant form).2. Construction of new theory: odd Root systems, Period map of type D_4.3. The relationship between the topology of the complexified orbit space and the semi-algebraic geometry of real orbit space of a finite reflection group (presentation of braid group, K(π,1)-space, twisted real structure, connected components of the complement of twisted real discriminants loci, a relation with the regular eigenvector of the Coxeter element, the characteristic variety, bifurcation set, Linearization theorem). Less
本文的主要目的是用李理论描述与一个原始形式积分相联系的周期映射。与椭圆李代数和椭圆李群有关的学科。椭圆代数的最高权表示理论的构造:即使椭圆代数不是Kac-Moody代数,通过用Heisenberg代数代替Cartan子代数,我们可以构造无限维的最高权表示。由于根式是无限维的,并创建一个非交换代数,我们开发了一个新的概念,称为块代数。椭圆李群的Bruhat-Tits分解:由于上述1.,我们知道有足够的表示,我们可以通过可积表示的逆极限来引入椭圆群。其极大环面的正规化子是椭圆Weyl群对环面的扩张。即使椭圆Weyl群不是Coxeter群,我们证明了 ...更多信息 3.椭圆Coxeter元的特征多项式的η-积的Fourier系数非负当且仅当相应的Weyl群不变环具有平坦结构,即:D^<(1,1)>_4、E^<(1,1)>_6、E^<(1,1)>_7和E^<(1,1)>_8的情形。与经典有限根系有关的学科。有限反射群上的平坦结构(理论的重建,霍奇过滤,傅立叶变换和一致化方程(高斯-马宁连接),与Frobenius流形结构的关系,奇维纤维化的原始形式的周期积分的特殊解,辛群中的单值群,关于周期域的一个猜想,关于Eisenstein级数和判别式的一个猜想,关于判别式的幂根的一个猜想).新理论的构建:奇根系,D_4.3型周期图。复化轨道空间的拓扑与有限反射群的真实的轨道空间的半代数几何之间的关系(辫子群的表示,K(π,1)-空间,扭曲的真实的结构,扭曲的真实的判别轨迹的补的连通分支,与Coxeter元的正则本征向量的关系,特征簇,分歧集,线性化定理)。少
项目成果
期刊论文数量(102)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Terao, H.Horiuchi: "The Poincare series of the algebra of rational functions which are regular outside hyperplanes"J. of Algebra. 266. 169-179 (2003)
H.Terao,H.Horiuchi:“有理函数代数的庞加莱级数,这些函数是正则外超平面”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaki Kashiwara: "Truncated microsupport and holomorphic solutions of D-modules"Ann.Scient.Ec.Norm.Sup., 4^e serie. 36. 583-599 (2003)
Masaki Kashiwara:“D 模块的截断微支撑和全纯解决方案”Ann.Scient.Ec.Norm.Sup.,4^e 系列。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Terao, Hiroaki: "Algebras generated by reciprocals of linear forms"J. of Algebra. 250. 549-558 (2002)
Terao, Hiroaki:“由线性形式的倒数生成的代数”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Terao, H.Horiuchi: "The Poincare series of the algebra of rational functions which are regular outside hyperplanes"J. Algebra. 266. 169-179 (2003)
H.Terao,H.Horiuchi:“有理函数代数的庞加莱级数,这些函数是正则外超平面”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Terao, Hiroaki: "Multiderivations of Coxeter arrangements"Inventiones Math.. 148. 659-674 (2002)
Terao, Hiroaki:“Coxeter 排列的多重导数”Inventiones Math.. 148. 659-674 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Kyoji其他文献
Characteristics of alluvial-fan slope in New Zealand
新西兰冲积扇斜坡特征
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Saito;K.;吉田敏弘;石井英也;SAITO Kyoji - 通讯作者:
SAITO Kyoji
衛星画像を利用した植生活性度の空間分析『GISと地理空間情報(改訂版)』
利用卫星图像进行植被活动的空间分析《GIS与地理空间信息(修订版)》
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
SAITO;K;澤柿教伸・岩崎正吾・松岡直子・平川一臣;木村圭司;SAITO Kyoji;木村圭司(分担執筆) - 通讯作者:
木村圭司(分担執筆)
丸山千枚田(熊野市紀和町)の文化的景観と評価
丸山千枚田(熊野市喜轮町)的文化景观与评价
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Junko Furihata;Junichiro Tastumi;肥塚隆保;SAITO Kyoji;小倉眞・小野寺淳・青木幸代 - 通讯作者:
小倉眞・小野寺淳・青木幸代
「文化景観保全とGIS」空間情報シンポジウム
“文化景观保护与GIS”空间信息研讨会
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Junko Furihata;Junichiro Tastumi;肥塚隆保;SAITO Kyoji;小倉眞・小野寺淳・青木幸代;斉藤享治;斉藤享治;吉田敏弘 - 通讯作者:
吉田敏弘
SAITO Kyoji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Kyoji', 18)}}的其他基金
Establishment on the distinction method between magafans and fluvial fans
马加扇与河流扇区分方法的建立
- 批准号:
25350421 - 财政年份:2013
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Division of the definition between large fans and alluvial fans
大型扇与冲积扇的定义划分
- 批准号:
22500984 - 财政年份:2010
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Derive categories and infinite dimensional Lie allgebras associated with primitive forms
导出与原始形式相关的类别和无限维李代数
- 批准号:
20340011 - 财政年份:2008
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Evaluation of megafans in relation to definition of alluvial fans
与冲积扇定义相关的巨型风扇评估
- 批准号:
19500879 - 财政年份:2007
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of integrable systems and Lie algebras associated with the period maps for primitive forms
与原始形式周期图相关的可积系统和李代数的研究
- 批准号:
16340016 - 财政年份:2004
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Primitive Forms and Period Maps
原始形式和时期地图
- 批准号:
09440031 - 财政年份:1997
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DISTRIBUTION AND EVOLUTION OF ALLUVIAL FANS IN TROPIC AND TEMPERATE HUMID REGIONS
热带和温带湿润区冲积扇的分布与演化
- 批准号:
04808041 - 财政年份:1992
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Studies of Algebraic and Analytic Varieties
代数和解析簇的研究
- 批准号:
02452003 - 财政年份:1990
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2019
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Interrelation between quantum and contact topology via braid group methods
通过编织群方法实现量子拓扑和接触拓扑之间的相互关系
- 批准号:
19K03490 - 财政年份:2019
- 资助金额:
$ 5.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2018
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topological approaches to the structure of the virtual braid group
虚拟编织组结构的拓扑方法
- 批准号:
503744-2017 - 财政年份:2017
- 资助金额:
$ 5.44万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Representations of the Artin Braid Group, and Arithmetic AndAlgebraic Challenges to Riemann's Theorem
Artin Braid 群的表示以及对黎曼定理的算术和代数挑战
- 批准号:
8003253 - 财政年份:1980
- 资助金额:
$ 5.44万 - 项目类别:
Standard Grant