Synthetic approach for new developments of self-validating numerics

自验证数值新发展的综合方法

基本信息

  • 批准号:
    13440035
  • 负责人:
  • 金额:
    $ 10.88万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

In this research, we newly developed the self-validating numerical methods which can be applied to wide mathematical and analytical problems as well as extended or improved the existing techniques.And we actually applied these methods to particular problems such as equations in the mathematical fluid mechanics and oscillation problems. The important research results obtained by investigators and co-investigators are as follows :1. Nakao, N.Yamamoto, Watanabe established several refinements and extensions for the numerical verification methods of solutions for elliptic problems. Namely, they succeeded the numerical computation with guaranteed error bounds for the inverse eigenvalue problems of second order elliptic operator. They also obtained some results for enclosing the solutions for elliptic variational inequlities. Moreover, they computed an optimal constant with guaranteed accuracy appearing in the a priori error estimates for the finite element projection of the Poisson problem, which is an important contribution for the numerical verification for nonlinear elliptic problems.2. Nagatou and Minamoto obtained interesting computer assisted proofs for the Kolmogorov problem and for the perturbed Gelfand equation, respectively.3. Oishi established some fast algorithms for the fundamental validated computations for the solutions of linear equations.4. Nishida et al. computed with guaranteed error bounds for the non-trivial solution of heat convection problems, which is an important result for a computer assisted proof in the fluid mechanics.5. T. Yamamoto obtained some convergence results of the finite difference scheme for the singular solutions of two point boundary value problems.
在本研究中,我们发展了新的自验证数值方法,这些方法可以应用于广泛的数学和分析问题,并扩展或改进了现有的技术,我们实际上将这些方法应用于特定的问题,如数学流体力学中的方程和振动问题。研究者和合作研究者获得的重要研究成果如下:1。Nakao,N.Yamamoto,Watanabe建立了椭圆问题解的数值验证方法的一些改进和扩展。也就是说,他们成功地实现了二阶椭圆算子特征值反问题的数值计算,并保证了误差界。他们还得到了椭圆型变分不等式的封闭解的一些结果。此外,他们还计算了Poisson问题有限元投影先验误差估计中的一个保证精度的最优常数,这对非线性椭圆问题的数值验证是一个重要贡献. Nagatou和Minamoto分别获得了Kolmogorov问题和扰动Gelfand方程的有趣的计算机辅助证明。Oishi为线性方程组的基本验证计算建立了一些快速算法. Nishida等人计算了热对流问题非平凡解的保误差界,这是流体力学中计算机辅助证明的一个重要结果. T. Yamamoto获得了两点边值问题奇异解的有限差分格式的一些收敛性结果。

项目成果

期刊论文数量(76)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.T.Nakao: "Numerical verification methods for solutions of free boundary problems"Lecture Notes in Computational Science and Engineering. 195-208 (2001)
M.T.Nakao:“自由边界问题解决方案的数值验证方法”计算科学与工程讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nishida, T.: "Pattern Formation of Heat Convection Problems"Lecture Notes in Computational Science and Engineering. 19. 209-218 (2001)
Nishida, T.:“热对流问题的模式形成”计算科学与工程讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ryoo, C-S: "Numerical verification of solutions for variational inequalities of the Second Kind, Computer and Mathematics with Applications"Computer and Mathematics with Applications. 3. 1371-1380 (2002)
Ryoo,C-S:“第二类变分不等式解的数值验证,计算机和数学及其应用”计算机和数学及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nagatou, K.: "Verified numerical computations for eigenvalues of non-commutative harmonic oscillators"Numerical Functional Analysis and Optimization. 23. 633-650 (2002)
Nagatou, K.:“非交换谐振子特征值的数值计算验证”数值泛函分析和优化。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAO Mitsuhiro其他文献

NAKAO Mitsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAO Mitsuhiro', 18)}}的其他基金

A study on the numerical verification method of solutions with high accuracy for the nonlinear mathematical models in infinite dimension
无限维非线性数学模型高精度解的数值验证方法研究
  • 批准号:
    15K05012
  • 财政年份:
    2015
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical verification method of solutions for nonlinear evolutional equations
非线性演化方程解的数值验证方法
  • 批准号:
    24540151
  • 财政年份:
    2012
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer assisted analysis for complicated nonlinear phenomena
复杂非线性现象计算机辅助分析的发展
  • 批准号:
    20224001
  • 财政年份:
    2008
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Asymptotic behaivours of solutions for nonlinear wave equations
非线性波动方程解的渐近行为
  • 批准号:
    17340040
  • 财政年份:
    2005
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic approach for the development of computer assisted analysis from the numerical verification methods
从数值验证方法发展计算机辅助分析的综合方法
  • 批准号:
    15204007
  • 财政年份:
    2003
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exterior problem for nonlinear wave equations
非线性波动方程的外问题
  • 批准号:
    13440049
  • 财政年份:
    2001
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stabilization problem for nonlinear wave eq
非线性波方程的镇定问题
  • 批准号:
    10440053
  • 财政年份:
    1998
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Library for Validated Computation of Differential Equations
用于验证微分方程计算的库
  • 批准号:
    24540115
  • 财政年份:
    2012
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Self-validated computation of singular integral and integral equations
奇异积分和积分方程的自验证计算
  • 批准号:
    15540111
  • 财政年份:
    2003
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Validated computation of patterns in recurrent neural networks
循环神经网络中模式的验证计算
  • 批准号:
    493789610
  • 财政年份:
  • 资助金额:
    $ 10.88万
  • 项目类别:
    WBP Position
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了