Self-validated computation of singular integral and integral equations

奇异积分和积分方程的自验证计算

基本信息

  • 批准号:
    15540111
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

The present research has two purposes.1. Establishment of self-validated computation for singular integral using DE transformation, which is one of most effective methods for calculating approximate values of singular integrals.2. Development of numerical verification methods for the existence and the local uniqueness of solutions to integral equations.On the self-validated computation of DE transformation, we constructed a set of basic techniques for a computer program library of computation with guaranteed accuracy of singular integrals. For the arguments of the programs, we suppose integrands composed of elementary functions. The class of the DE transformation is chosen corresponding to the singularity of the integrand at the ends of the interval of integral. In order to estimate the error bounds, we need to verify the regularity of the integrand on an expanded area in a complex region. For this purpose, the method by Sugiura et al. is adopted. These results are described in detail in the report of the research results.On the numerical verification of integral equations, we carried out our study as follows.1. Establish a numerical verification for the local uniqueness of solutions to function equations including integral equations.2. Develop a numerical verification methods for the systems of ordinal differential equations with initial values which are derived from integral equations3. Implementation of 1 to 2.For 1, we have got an important result which will be useful for a wide range of self-validation. For 2 and 3, we have developed a new method and are now improving it for practical use.
本研究有两个目的。利用DE变换建立奇异积分的自验证计算,这是计算奇异积分近似值的最有效方法之一。发展了积分方程解的存在性和局部唯一性的数值验证方法。在DE变换的自验证计算上,我们构造了一套保证奇异积分精度的计算机程序库的基本技术。对于程序的自变量,我们假定被积函数由初等函数组成。DE变换的类别是根据被积函数在积分区间末端的奇异性来选择的。为了估计误差界,我们需要在复杂区域的扩展区域上验证被积函数的正则性。为此,Sugiura等人的方法。是被收养的。这些结果在研究结果的报告中有详细的描述。在积分方程组的数值验证方面,我们开展了以下研究。建立了包含积分方程解的局部唯一性的数值验证。发展了一种由积分方程导出的具有初值的有序微分方程组的数值验证方法。1到2的实现。对于1,我们得到了一个重要的结果,该结果将对广泛的自我验证有用。对于2和3,我们已经开发了一种新的方法,现在正在改进以用于实际应用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Numerical Vertification of Nontrivial Solutions for the Heat Convection Problem
热对流问题非平凡解的数值验证
A numerical verification of nontrivial solutions for the heat convection problems
热对流问题非平凡解的数值验证
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Watanabe;Y.;Yamamoto;N.;Nakao;M.T.;Nishida,T.
  • 通讯作者:
    Nishida,T.
Error estimation with guaranteed accuracy of finite element method in nonconvex polygonal domains
Some computer assistedproofs for solutions of the heat convectionproblems
解决热对流问题的一些计算机辅助证明
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.T.Nakao;Y.Watanabe;N.Yamamoto;T.Nishida
  • 通讯作者:
    T.Nishida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMAMOTO Nobito其他文献

YAMAMOTO Nobito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMAMOTO Nobito', 18)}}的其他基金

Library for Validated Computation of Differential Equations
用于验证微分方程计算的库
  • 批准号:
    24540115
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Validate Computation Library on Time Evolution Equations
验证时间演化方程的计算库
  • 批准号:
    21540115
  • 财政年份:
    2009
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical verification methods on evolution equations
演化方程数值验证方法的发展
  • 批准号:
    19540118
  • 财政年份:
    2007
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Verification Methods for Dynamical Systems described by ODEs
常微分方程描述的动力系统数值验证方法
  • 批准号:
    17540106
  • 财政年份:
    2005
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Analysis by Numerical Verification Methods
数值验证方法的非线性分析
  • 批准号:
    13640105
  • 财政年份:
    2001
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of practical methods for rigorous calculation with guaranteed accuracy
开发可保证精度的严格计算的实用方法
  • 批准号:
    09640278
  • 财政年份:
    1997
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了