Stabilization problem for nonlinear wave eq

非线性波方程的镇定问题

基本信息

  • 批准号:
    10440053
  • 负责人:
  • 金额:
    $ 6.72万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

The head investigator. Nakao. has considered the stabilization problem for the nonlinear wave equations in interior and exterior domains and also the behaviours of solutions for nonlinear heat equations.For exterior problems. we first proved the local energy decay for linear wave equations. and on the basis of this we have derived L^p estimates. Further. by use of these estimates we have discussed on the global existence of semilinear wave equations. We note that in our argument no geometrical conditions on the shape of obstacles.For interior problems. we have proved global existence of smooth solutions for the quasilinear wave equations with a very weak dissipative term. In this procedure we have showed a unique continuation property for the wave equation with a variable coefficient. Nakao's inequality was used for the decay estimate. which is an originality of this paper.Concernibg nonlinear heat equations we have treated meancurvature type and m-laplacian type quasilinear equations under various nonlinear perturbations. We have derived sharp estimates of solutions including asymptotics as t → ∞ and smoothing effects near t = O.Investigator Kawashima has mainly treated the equations concerning gas dynamics and shown many interesting results. Investigator Shibata has considered the visco-elastic wave equations and also exterior problems concerning fluid dynamicsand prove many new results by use of spectral analysis. Investigator Kato has discussed on the global solutions of a non-Newtonian flow equation.
首席调查员。中尾。研究了非线性波动方程内外域的镇定问题和非线性热方程解的性质。对于外部问题。我们首先证明了线性波动方程的局部能量衰减。在此基础上,我们得到了L^p估计。进一步。利用这些估计,我们讨论了半线性波动方程的整体存在性。我们注意到,在我们的论证中没有关于障碍物形状的几何条件。解决内部问题。证明了一类极弱耗散项拟线性波动方程光滑解的整体存在性。在这个过程中,我们证明了变系数波动方程的一个独特的延拓性质。中尾不等式用于衰减估计。这是本文的一个独创性之处。关于非线性热方程,我们讨论了各种非线性扰动下的曲率型和m-拉普拉斯型拟线性方程。我们得到了解的尖锐估计,包括t→∞时的渐近性和t = o附近的平滑效应。研究者Kawashima主要处理了有关气体动力学的方程,并给出了许多有趣的结果。研究者Shibata考虑了粘弹性波动方程和流体动力学的外部问题,并利用谱分析证明了许多新的结果。加藤研究员讨论了一个非牛顿流动方程的整体解。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitsuhiro Nakao et al.: "Global existence and gradient estimates for a quasilinear parabolic equation of m-Laplacian type with …"J.Differential Equations. 162. 224-250 (2000)
Mitsuhiro Nakao 等人:“m-拉普拉斯型拟线性抛物方程的全局存在性和梯度估计……”J.Differential Equations 162. 224-250 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Kawashima 他: "A singular limit for hyperbolic-elliptic coupled systems in radiation hydrodynamics"Indiana Univ. Math. J.. (to appear). (2000)
S. Kawashima 等人:“辐射流体动力学中双曲椭圆耦合系统的奇异极限”印第安纳大学数学杂志(2000 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中尾慎宏: "概説 微分方程式" サイエンス社, 155 (1999)
Nobuhiro Nakao:《微分方程概述》科学出版社,155(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuhiro Nakao: "Local energy decay for the wave equation in an exterior domainwith a localized dissipation" J. Differential Equations. 148. 388-406 (1998)
Mitsuhiro Nakao:“具有局部耗散的外部域中波动方程的局部能量衰减”J.微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mitsuhiro Nakao: "L^p estimates for the wave equation and global existence for the semilinear wave equations in exterior domains"Math.Ann. (in press.). (2001)
Mitsuhiro Nakao:“波动方程的 L^p 估计和外部域中半线性波动方程的全局存在性”Math.Ann。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAO Mitsuhiro其他文献

NAKAO Mitsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAO Mitsuhiro', 18)}}的其他基金

A study on the numerical verification method of solutions with high accuracy for the nonlinear mathematical models in infinite dimension
无限维非线性数学模型高精度解的数值验证方法研究
  • 批准号:
    15K05012
  • 财政年份:
    2015
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical verification method of solutions for nonlinear evolutional equations
非线性演化方程解的数值验证方法
  • 批准号:
    24540151
  • 财政年份:
    2012
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of computer assisted analysis for complicated nonlinear phenomena
复杂非线性现象计算机辅助分析的发展
  • 批准号:
    20224001
  • 财政年份:
    2008
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Asymptotic behaivours of solutions for nonlinear wave equations
非线性波动方程解的渐近行为
  • 批准号:
    17340040
  • 财政年份:
    2005
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic approach for the development of computer assisted analysis from the numerical verification methods
从数值验证方法发展计算机辅助分析的综合方法
  • 批准号:
    15204007
  • 财政年份:
    2003
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Synthetic approach for new developments of self-validating numerics
自验证数值新发展的综合方法
  • 批准号:
    13440035
  • 财政年份:
    2001
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exterior problem for nonlinear wave equations
非线性波动方程的外问题
  • 批准号:
    13440049
  • 财政年份:
    2001
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Global Existence and Computer-Assisted Proofs of Singularities in Incompressible Fluids
不可压缩流体奇点的整体存在性和计算机辅助证明
  • 批准号:
    1763356
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Continuing Grant
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
  • 批准号:
    18H01128
  • 财政年份:
    2018
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Existence for a Singular General Activator-Inhibitor Model
单一通用激活剂-抑制剂模型的全球存在
  • 批准号:
    496631-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 6.72万
  • 项目类别:
    University Undergraduate Student Research Awards
Global Existence of the Critical Einstein-Equivariant Wave Map System
临界爱因斯坦等变波图系统的整体存在性
  • 批准号:
    262621851
  • 财政年份:
    2014
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Research Fellowships
Global existence and the asymptotic behavior for partial diffierential equations concerning nonlinear waves
非线性波偏微分方程的全局存在性和渐近行为
  • 批准号:
    26400168
  • 财政年份:
    2014
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
  • 批准号:
    24540215
  • 财政年份:
    2012
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global existence and asymptotic behavior for systems of nonlinear hyperbolic equations
非线性双曲方程组的全局存在性和渐近行为
  • 批准号:
    23540241
  • 财政年份:
    2011
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Existence and Pattern Formation of Solutions to a Reaction-Diffusion-Chemotaxis System
反应扩散趋化系统解的全局存在性和模式形成
  • 批准号:
    22740112
  • 财政年份:
    2010
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on the sufficient conditions for the global existence of solutions to the exterior problems for nonlinear hyperbolic equations
非线性双曲方程外问题解全局存在的充分条件研究
  • 批准号:
    20540211
  • 财政年份:
    2008
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global existence and blow-up for solutions to nonlinear elastic waves
非线性弹性波解的全局存在和爆炸
  • 批准号:
    13640202
  • 财政年份:
    2001
  • 资助金额:
    $ 6.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了