Studies of the structure of operators on analytic function spaces and their invariant subspaces

解析函数空间及其不变子空间算子结构的研究

基本信息

  • 批准号:
    16340037
  • 负责人:
  • 金额:
    $ 6.4万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Izuchi (head of investigator) got the following results as the joint works.1) Let M be an invariant subspace on the Hardy space over the bidisk. We have multiplication operators R_z and R_w on M. It is given a characterization of M for which rank[R_z, R*_w]=1. Also it is determined N=H^2Θ M satisfying rank[S_z, S*_w]=1.2) It is given a lower and upper bound of the essential norms of the difference of composition operators on the space of bounded analytic functions H∞ on the open unit disk D. Also it is studied the topological structure of weighted composition operators on H∞.3) It is studied quasi-invariant subspaces of the Fock space over C-2 generated by a polynomial.4) It is given a characterization of two Hankel operators on H^2 for which their product is a compact perturbation of Hankel operator.5) It is given a partial answer for Gorkin-Mortini' s problem on closed prime ideals of H∞.6) It is studied a common zero set of equivalent singular inner functions in the maximal ideal space of H∞. Also it is solved two problems on singular inner functions posed by Mortini and Nicolau.Nakazi (investigator) studied a commutant lifting theorem for compression operators.Ohno (investigator) studied compact Hankel-type operators on the space of bounded harmonic functions h∞ on D. Also it is determined the essential norms of difference of composition operators on H∞.
Izuchi(研究小组组长)在联合工作中得到了以下结果:1)设M是双圆盘上哈代空间上的不变子空间。我们有M上的乘法算子R_z和R_w。给出了秩[R_z,R*_w]=1的M的一个特征. 2)给出了开单位圆盘D上有界解析函数空间H∞上复合算子差的本质范数的一个上、下界。研究了H∞上加权复合算子的拓扑结构; 3)研究了C-2上Fock空间中由多项式生成的拟不变子空间; 4)给出了H ^2上两个Hankel算子的一个特征,使得它们的乘积是Hankel算子的紧扰动; 5)给出了H∞闭素理想上Gorkin-Mortini问题的部分解答; 6)研究了H∞的极大理想空间中等价奇异内函数的公共零点集。Nakazi(研究者)研究了压缩算子的交换提升定理,Ohno(研究者)研究了D上有界调和函数空间h∞上的紧Hankel型算子.并确定了H∞上复合算子的差分的本质范数。

项目成果

期刊论文数量(138)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular inner functions whose Frostman shifts are Carleson-Newman Blaschke products II
Frostman 位移为 Carleson-Newman Blaschke 产品 II 的奇异内部函数
Common zero sets of equivalent singular inner functions II
等价奇异内函数的公共零集 II
Singular inner functions whose Frostman shifts are Carleson-Newman Blaschke products
Frostman 平移是 Carleson-Newman Blaschke 产品的奇异内部函数
Hankel-type operators on the space of bounded Hankel-type operators on the space of bounded harmonic functions.
有界调和函数空间上的 Hankel 型算子 有界 Hankel 型算子。
Singular inner functions whose Frostman shifts are Carleson-Newman Blaschke products.
其 Frostman 移位的奇异内部函数是 Carleson-Newman Blaschke 产品。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IZUCHI Keiji其他文献

IZUCHI Keiji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IZUCHI Keiji', 18)}}的其他基金

Study of operators on spaces of analytic functions and the space of bounded analytic functions
解析函数空间和有界解析函数空间算子的研究
  • 批准号:
    24540164
  • 财政年份:
    2012
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of bounded analytic functions and associated operators on spaces of analytic functions
有界解析函数及解析函数空间上的关联算子的研究
  • 批准号:
    21540166
  • 财政年份:
    2009
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of ideals in the space of bounded analytic functions and operator theory
有界解析函数空间中的理想结构和算子理论
  • 批准号:
    13440043
  • 财政年份:
    2001
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on families of functions determining structures of spaces of analytic functions
决定解析函数空间结构的函数族研究
  • 批准号:
    10440039
  • 财政年份:
    1998
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
  • 批准号:
    DDG-2019-07097
  • 财政年份:
    2021
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Discovery Development Grant
Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
  • 批准号:
    DDG-2019-07097
  • 财政年份:
    2020
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Discovery Development Grant
Perturbations of linear operators and the Invariant Subspace Problem
线性算子的扰动和不变子空间问题
  • 批准号:
    DDG-2019-07097
  • 财政年份:
    2019
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Discovery Development Grant
The Almost-Invariant Subspace Problem
几乎不变的子空间问题
  • 批准号:
    528678-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Research on topological and geometrical structure of invariant subspace problem based on a choice function
基于选择函数的不变子空间问题的拓扑和几何结构研究
  • 批准号:
    16K13760
  • 财政年份:
    2016
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
An attempt to close unresolved cases of the invariant subspace problem.
尝试结束不变子空间问题的未解决案例。
  • 批准号:
    438440-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An attempt to close unresolved cases of the invariant subspace problem.
尝试结束不变子空间问题的未解决案例。
  • 批准号:
    438440-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An attempt to close unresolved cases of the invariant subspace problem.
尝试结束不变子空间问题的未解决案例。
  • 批准号:
    438440-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An attempt to close unresolved cases of the invariant subspace problem.
尝试结束不变子空间问题的未解决案例。
  • 批准号:
    438440-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Invariant subspace of certain classes of operators
某些类算子的不变子空间
  • 批准号:
    311899-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了