Research on Dynamical Systems, Chaos and Fractals Modeled by Billiard Systems in Aspect of Global Analysis

全局分析方面台球系统建模的动力系统、混沌和分形研究

基本信息

项目摘要

We have improved the proof of the existence of Lipschitz continuous invariant foliations for two dimensional dispersing billiards without eclipse and make it more constructive and more elementary. This may give a new progress in applications. We introduced the geometry of geodesies due to Busemann to study the billiard ball trajectories in their configuration spaces. In particular, we found out some relations between parallels and periodic trajectories. Moreover, we observed interesting phenomena of billiard systems in a closed curve given by |x/a|^r+|y/b|^r=1(r>1) with computer simulations. Its Poincare map gives a lot of information, by which those phenomena may be proved.In hyperbolic and intermittent maps regarded as toy models of classical periodic billiards, transports are found to be characterized by the spectra of the Frobenius-Perron operator. Furthermore, we researched the relationship between boundary elements method and scattering problems in quantum billiards.We studied the renormalization associated to indifferent periodic points of complex dynamics. We were able to define a new space of maps which is invariant under parabolic renormalization and its perturbations.We observed large deviations for countable to one piecewise invertible Markov systems. In particular, we showed the(level 2)upper large deviation bounds and exponential decreasing property under certain conditions. Moreover, we researched multifractal version of large deviation laws.Further, we have succeeded to prove the conjecture by Boyle and Maass. We can construct a one-parameter family of complex structures with critical point at the point the recurrence and the transience switch to the other. We showed that freedom of deformation to preserve recurrence at the point is relatively low. As related topics to Quantum Chaos and so on, we have been studying the theory of operator algebras itself and obtained several results in the subject.
我们改善了Lipschitz的存在的证据,用于二维分散的台球,而无需蚀,使其更具建设性和更基本。这可能会在应用程序方面带来新的进展。由于Busemann,我们引入了大地测量的几何形状,以研究其配置空间中的台球轨迹。特别是,我们发现了相似之处与周期轨迹之间的一些关系。此外,通过计算机模拟,我们在| x/a |^r+| y/b |^r = 1(r> 1)的封闭曲线中观察到了台球系统的有趣现象。它的繁殖图提供了很多信息,可以证明这些现象。在双曲线和间歇性地图中,被视为经典周期性台球的玩具模型,发现运输是由Frobenius-Perron操作员的光谱所表征的。此外,我们研究了边界元素方法与量子台球中的散射问题之间的关系。我们研究了与复杂动力学无关的周期点相关的重新归一化。我们能够定义一个新的地图空间,该空间在抛物线重质化及其扰动下是不变的。我们观察到了可数到一个零散可逆的马尔可夫系统的巨大偏差。特别是,我们在某些条件下显示了(2级)上部较大偏差边界和指数降低的性质。此外,我们研究了大型偏差定律的多型版本。我们可以在复发点和瞬态切换到另一个方面构建具有临界点的复杂结构的单参数家族。我们表明,在该点保持复发的变形自由相对较低。作为与量子混乱相关的主题,我们一直在研究操作者代数本身的理论,并在该主题中获得了一些结果。

项目成果

期刊论文数量(370)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Satoshi Ikeda: "Fair Circulation of a Token"IEEE Transactions on Parallel and Distributed Systems. 4. 367-372 (2002)
Satoshi Ikeda:“代币的公平流通”IEEE Transactions on Parallel and Distributed Systems。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nobuhiro Innami: "Geometry of geodesics for convex billiards and circular billiards"Nihonkai Math. J.. 13. 207-215 (2002)
Nobuhiro Inami:“凸台球和圆形台球的测地线几何”日本海数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Makino: "Derivation from Berry-Robnik distribution caused by spectral accumulation"Journal of Physical Society of Japan. 72(Supplement C). 97-100 (2003)
H.Makino:“由光谱累积引起的 Berry-Robnik 分布的推导”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Izumi Kubo: "Generating functions of exponential type for orthogonal polynomials"Infinite Dimensional Analysis, Quantum Probability and Related Topics. 7,1. 1-5 (2004)
久保泉:“正交多项式的指数型函数的生成”无限维分析、量子概率及相关主题。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Satoshi Ikeda: "Impact of Local Topological Information on Random Walks on Finite Graphs"Thirtieth International Colloquium on Automata, Languages and Programming2. 203-207 (2003)
Satoshi Ikeda:“局部拓扑信息对有限图随机游走的影响”第三十届自动机、语言和编程国际研讨会2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUBO Izumi其他文献

KUBO Izumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUBO Izumi', 18)}}的其他基金

High throughput Analysis of Gene Expression in single cells utilizing Lab-disc
利用实验室光盘进行单细胞基因表达的高通量分析
  • 批准号:
    24510171
  • 财政年份:
    2012
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Lab-Disk to high-throughput genomic profiling of single cells
Lab-Disk 在单细胞高通量基因组分析中的应用
  • 批准号:
    21510127
  • 财政年份:
    2009
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on chaotic behavior of white noise
白噪声混沌行为研究
  • 批准号:
    20540145
  • 财政年份:
    2008
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of bisphenol A sensor for the successive determination of biological fluid utilizing nano chemical receptor
开发利用纳米化学受体连续测定生物体液的双酚A传感器
  • 批准号:
    18550132
  • 财政年份:
    2006
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of A Sensing System for Endocrine Disrupting Chemicals Utilizing Nano Chemical Receptor Modified Sensor Chip
利用纳米化学受体修饰的传感器芯片开发内分泌干扰化学品传感系统
  • 批准号:
    15550130
  • 财政年份:
    2003
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MOLECULAR WIRING TYPE DNA SENSOR
分子布线型 DNA 传感器
  • 批准号:
    11650851
  • 财政年份:
    1999
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated Research on Equilibrium Random Phenomena
平衡随机现象的综合研究
  • 批准号:
    10304006
  • 财政年份:
    1998
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Probabilistic and Analytical Research of White Noise System
白噪声系统的概率与分析研究
  • 批准号:
    07454033
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STUDY OF REAGENTLESS PHOSPHATE SENSING SYSTEM
无试剂磷酸盐传感系统的研究
  • 批准号:
    07650981
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了