Research on Dynamical Systems, Chaos and Fractals Modeled by Billiard Systems in Aspect of Global Analysis

全局分析方面台球系统建模的动力系统、混沌和分形研究

基本信息

项目摘要

We have improved the proof of the existence of Lipschitz continuous invariant foliations for two dimensional dispersing billiards without eclipse and make it more constructive and more elementary. This may give a new progress in applications. We introduced the geometry of geodesies due to Busemann to study the billiard ball trajectories in their configuration spaces. In particular, we found out some relations between parallels and periodic trajectories. Moreover, we observed interesting phenomena of billiard systems in a closed curve given by |x/a|^r+|y/b|^r=1(r>1) with computer simulations. Its Poincare map gives a lot of information, by which those phenomena may be proved.In hyperbolic and intermittent maps regarded as toy models of classical periodic billiards, transports are found to be characterized by the spectra of the Frobenius-Perron operator. Furthermore, we researched the relationship between boundary elements method and scattering problems in quantum billiards.We studied the renormalization associated to indifferent periodic points of complex dynamics. We were able to define a new space of maps which is invariant under parabolic renormalization and its perturbations.We observed large deviations for countable to one piecewise invertible Markov systems. In particular, we showed the(level 2)upper large deviation bounds and exponential decreasing property under certain conditions. Moreover, we researched multifractal version of large deviation laws.Further, we have succeeded to prove the conjecture by Boyle and Maass. We can construct a one-parameter family of complex structures with critical point at the point the recurrence and the transience switch to the other. We showed that freedom of deformation to preserve recurrence at the point is relatively low. As related topics to Quantum Chaos and so on, we have been studying the theory of operator algebras itself and obtained several results in the subject.
本文改进了无食二维离散台球Lipschitz连续不变叶理存在性的证明,使之更有建设性,更初等。这可能会在应用方面取得新的进展。我们引入了Busemann测地线的几何,研究了台球在其位形空间中的轨迹。特别地,我们发现了平行线和周期轨线之间的一些关系。此外,我们观察到台球系统在一个封闭曲线中的有趣现象,|X/a| ^r+| y/B| ^r=1(r>1),计算机模拟。它的Poincare映射提供了大量的信息,可以证明这些现象.在被视为经典周期台球玩具模型的双曲和间歇映射中,发现输运可以用Frobenius-Perron算子的谱来表征.进一步研究了边界元方法与量子台球中散射问题的关系,研究了复动力学中不同周期点的重整化。我们定义了一个新的映射空间,它在抛物重整化及其扰动下是不变的。我们观察到可数到一个分段可逆马尔可夫系统的大偏差。特别地,在一定条件下,我们给出了(水平2)大偏差上界和指数递减性质。此外,我们还研究了大偏差律的多重分形形式,并成功地证明了波义耳和Maass的猜想。我们可以构造一个单参数复结构族,其临界点位于递归和瞬变的切换点。我们表明,自由变形,以保持复发点是相对较低的。作为与量子混沌等相关的课题,我们一直在研究算子代数本身的理论,并得到了一些结果。

项目成果

期刊论文数量(370)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shuichi Tasaki: "On entropy production of a one-dimensional lattice conductor"Quantum Information V. (2004)
Shuichi Tasaki:“论一维晶格导体的熵产生”Quantum Information V.(2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Fujiyoshi: Friedrichs model with singular continuous spectrum. 72-C. 73-76 (2003)
M.Fujiyoshi:具有奇异连续谱的 Friedrichs 模型。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nobuhiro Asai: "Multiplicative renormalization and generating functions I"Taiwanese Journal of Mathematics. (2003)
Nobuhiro Asai:“乘法重整化和生成函数 I”台湾数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Satoshi Ikeda: "Fair Circulation of a Token"IEEE Transactions on Parallel and Distributed Systems. 4. 367-372 (2002)
Satoshi Ikeda:“代币的公平流通”IEEE Transactions on Parallel and Distributed Systems。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michiko Yuri: "Weak Gibbs measures and the local product structure"Ergodic Theory and Dynamical Systems. 22. 1933-1955 (2002)
Michiko Yuri:“弱吉布斯措施和局部产品结构”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUBO Izumi其他文献

KUBO Izumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUBO Izumi', 18)}}的其他基金

High throughput Analysis of Gene Expression in single cells utilizing Lab-disc
利用实验室光盘进行单细胞基因表达的高通量分析
  • 批准号:
    24510171
  • 财政年份:
    2012
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Lab-Disk to high-throughput genomic profiling of single cells
Lab-Disk 在单细胞高通量基因组分析中的应用
  • 批准号:
    21510127
  • 财政年份:
    2009
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on chaotic behavior of white noise
白噪声混沌行为研究
  • 批准号:
    20540145
  • 财政年份:
    2008
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of bisphenol A sensor for the successive determination of biological fluid utilizing nano chemical receptor
开发利用纳米化学受体连续测定生物体液的双酚A传感器
  • 批准号:
    18550132
  • 财政年份:
    2006
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of A Sensing System for Endocrine Disrupting Chemicals Utilizing Nano Chemical Receptor Modified Sensor Chip
利用纳米化学受体修饰的传感器芯片开发内分泌干扰化学品传感系统
  • 批准号:
    15550130
  • 财政年份:
    2003
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MOLECULAR WIRING TYPE DNA SENSOR
分子布线型 DNA 传感器
  • 批准号:
    11650851
  • 财政年份:
    1999
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrated Research on Equilibrium Random Phenomena
平衡随机现象的综合研究
  • 批准号:
    10304006
  • 财政年份:
    1998
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Probabilistic and Analytical Research of White Noise System
白噪声系统的概率与分析研究
  • 批准号:
    07454033
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
STUDY OF REAGENTLESS PHOSPHATE SENSING SYSTEM
无试剂磷酸盐传感系统的研究
  • 批准号:
    07650981
  • 财政年份:
    1995
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了