Advanced Geometric Algorithms Based on Discrete Analysis of Information-Geometric Structures with Applications

基于信息几何结构离散分析的高级几何算法及其应用

基本信息

  • 批准号:
    13480079
  • 负责人:
  • 金额:
    $ 9.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

Information objects such as Web graphs, quantum information, and knowledge are represented by manifolds in geometric spaces with coordinates naturally introduced by their associated numerical values. Information geometry investigates geometric structures of such spaces., while there have been little research on discrete algorithms working in the spaces. This project first investigates discrete geometric structures of information geometry, including quantum information geometry, and then develops efficient algorithms working in the space. Some topological properties such as shelling/orientation of polyhedral complexes and Web link graph structures are also investigated together with computational algebraic tools such as toxic ideals and their Grobner bases.Concerning Web structures, information compression techniques are developed by using discrete structure of the graph with regard to information entropy in the space. Topological extensions of shellings of a simplicial complex are made for oriented matroics, with connection to the realizability issue in real space.Discrete optimization algorithms have been devised in quantum information geometry, such as the Voronoi diagram of quantum states with respect to quantum divergence, minimum enclosing sphere of quantum states in connection with computing the Holevo capacity of a quantum communication channel. As one of remarkable results, we show the existence of a 4-signal 1-qubit quantum channel for the first time. Quantum entanglements and their hierarchical structures are also studied from the geometric viewpoint. With these results such new approaches to quantum information from discrete geometry have been shown to be a promising field.
信息对象,如Web图形、量子信息和知识,由几何空间中的流形表示,其相关的数值自然引入坐标。信息几何研究的是这类空间的几何结构,而在这类空间中工作的离散算法的研究却很少。这个项目首先研究了信息几何的离散几何结构,包括量子信息几何,然后开发了在空间中工作的高效算法。结合计算代数工具,如毒性理想及其Grobner基,研究了多面体复合体的一些拓扑性质,如多面体复合体和Web链接图结构,并利用图的离散结构对空间中的信息熵进行了信息压缩.针对实空间中的可实现性问题,对单纯形复形的壳拓扑进行了拓扑化扩展,提出了量子信息几何中的离散优化算法,如量子态关于量子散度的Voronoi图、与计算量子通信信道Holevo容量有关的量子态的最小封闭球面等.作为显著的结果之一,我们首次证明了4信号1量子比特量子通道的存在。从几何的角度研究了量子纠缠及其层次化结构。有了这些结果,这种从离散几何获得量子信息的新方法被证明是一个很有前途的领域。

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Qubit Channels which Require Four Inputs to Achieve Capacity : Implications for Additivity Conjectures
需要四个输入才能实现容量的量子位通道:对可加性猜想的影响
Finding Neighbor Communities in the Web Using an Inter-site Graph.
使用站点间图在网络中查找邻居社区。
H.Imai, T.Masada, F.Takeuchi, K.Imai: "Enumerating Triangulations in General Dimensions"International Journal of Computational Geometry and Applications. Vol.12,No.6. 455-480 (2002)
H.Imai、T.Masada、F.Takeuchi、K.Imai:“枚举一般维度中的三角剖分”国际计算几何与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Imai, M.Hachimori, M.Hamada, H.Kobayashi, K.Matsumoto: "Optimization in Quantum Computation and Information"Proceedings of the 2nd Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest, April 2001. 60-69 (2001)
H.Imai、M.Hachimori、M.Hamada、H.Kobayashi、K.Matsumoto:“量子计算和信息的优化”第二届日本-匈牙利离散数学及其应用研讨会论文集,布达佩斯,2001 年 4 月。 60-
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Numbers of Primal and Dual Bases of Network Flow and Unimodular Integer Programs
网络流的原底数和对偶底数及幺模整数规划
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMAI Hiroshi其他文献

IMAI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMAI Hiroshi', 18)}}的其他基金

Computational Combinatorial Physics by Harmonizing Matroid Theory and Quantum Physics
协调拟阵理论和量子物理的计算组合物理
  • 批准号:
    16K12392
  • 财政年份:
    2016
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Interaction between two motor domains of cytoplasmic dynein stepping along microtubules revealed by cryo-electron microscopy.
冷冻电子显微镜揭示了沿着微管步进的细胞质动力蛋白的两个运动域之间的相互作用。
  • 批准号:
    16K07327
  • 财政年份:
    2016
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of synthesis and outward acceleration of circumstellar matter through simultaneous multiple-band high-resolution radio imaging
通过同时多波段高分辨率射电成像探索星周物质的合成和向外加速
  • 批准号:
    16H02167
  • 财政年份:
    2016
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exploiting Matroid Minor Theory and Its Connection with Quantum Computing Models
利用拟阵小理论及其与量子计算模型的联系
  • 批准号:
    26540004
  • 财政年份:
    2014
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Large area sky surveys of hydroxyl maser sources and establishment of their high precision trigonometry
羟基脉泽源大面积巡天及其高精度三角法的建立
  • 批准号:
    25610043
  • 财政年份:
    2013
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
High-Level Processing of Huge-Scale Networks: Challenges from Graph Decomposition Theory to Practically Efficient Algorithms
大规模网络的高级处理:从图分解理论到实用高效算法的挑战
  • 批准号:
    24650003
  • 财政年份:
    2012
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Preservation of endangered and rare animalspecies using induced pluripotent stem cells.
使用诱导多能干细胞保护濒危和稀有动物物种。
  • 批准号:
    23658224
  • 财政年份:
    2011
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Long term culture and regulation of differentiation of germ cells from the testis in domestic species
家养物种睾丸生殖细胞的长期培养和分化调节
  • 批准号:
    22380150
  • 财政年份:
    2010
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Surveys and high resolution imaging of jets from evolved stars
演化恒星喷流的勘测和高分辨率成像
  • 批准号:
    20540234
  • 财政年份:
    2008
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Advances in optimal design of nonlinear experiments based on quantum information geometry
基于量子信息几何的非线性实验优化设计研究进展
  • 批准号:
    21K11749
  • 财政年份:
    2021
  • 资助金额:
    $ 9.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了