Studies of PC cluster-based parallel processing for large-scale medical images on navigation system of the next generation surgery
基于PC集群的下一代手术导航系统大规模医学图像并行处理研究
基本信息
- 批准号:14580374
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The following two problems are very important in medical image processing. In this study, PC cluster-based parallel programs for these problems are developed, This PC cluster has 64 PCs, each of which has two Pentium-3 (1GHz) processors with 2GB main memory, connected with Myrinet 2000 communication network.(1) Volume rendering:To render at least 512 x 512 x 512 voxel volumes in real-time, we have developed a sort-last parallel volume rendering method fqr distributed memory multiprocessors. Our sort-last method consists of two methods, Hsu' s segmented ray casting and our divided-screenwise hierarchical (DSH) composition, in which each processor produces a subimage and merges all the produced subimages into the final image. This paper describes the DSH method, which aims at achieving high performance composition on a large number of processors: Ourimplementation on the PC cluster can composite a 512 x 512 pixel image about twice as fast as an existing method, the binary-swap method, so that can render a 512 x 512 x 224 voxel volume at approximately eight frames per second (fps).(2) No rigid image registration:Our algorithm realizes scalable registration for high-resolution three-dimensional (3-D) images by employing three techniques: (1) data distribution; (2) data-parallel processing; and (3) dynamic load balancing. The experimental results show that our parallel implementation on the PC cluster registers liver CT images of 512 X 512 X 159 voxels within 8 minutes while a sequential implementation takes 12 hours. Furthermore, our implementation allows processors to use less memory, and thereby enables us to align 1024 X 1024 X 590 voxel images, which is not easy for single processor systems due to the restrictions on the memory space and the processing time.
以下两个问题在医学图像处理中非常重要。本研究开发了基于PC机群的并行计算程序,该PC机群有64台PC机,每台PC机有两个Pentium-3(1GHz)处理器,2GB内存,连接Myrinet 2000通信网络。(1)体绘制:为了实时绘制至少512 × 512 × 512的体素体,我们开发了一种基于分布式存储多处理器的sort-last并行体绘制方法。我们的sort-last方法由两种方法组成,Hsu的分段光线投射和我们的分屏分层(DSH)合成,其中每个处理器产生一个子图像,并将所有产生的子图像合并到最终图像中。本文介绍了DSH方法,其目的是在大量的处理器上实现高性能的合成:Ourimplementation在PC集群上可以合成一个512 × 512像素的图像约两倍的速度作为现有的方法,二进制交换方法,因此,可以渲染一个512 × 512 × 224体素体积约8帧每秒(fps)。(2)无刚性图像配准:我们的算法通过采用三种技术实现了高分辨率三维(3-D)图像的可扩展配准:(1)数据分布;(2)数据并行处理;(3)动态负载平衡。实验结果表明,我们在PC集群上的并行实现注册肝脏CT图像的512 × 512 × 159体素在8分钟内,而顺序执行需要12小时。此外,我们的实现允许处理器使用更少的存储器,从而使我们能够对齐1024 X 1024 X 590体素图像,这对于单处理器系统是不容易的,由于对存储器空间和处理时间的限制。
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akira Takeuchi: "An Improvement on Binary-Swap Compositing for Sort-Last Parallel Rendering"Proc. of 18th ACM Symp. on Applied Computing (SAC 2003). 受理済(3月発表予定). 8 (2003)
Akira Takeuchi:“对最后排序并行渲染的二进制交换合成的改进”Proc。第 18 届 ACM Symp 应用计算 (SAC 2003) 已接受(将于 3 月公布)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuhiro Kawasaki: "High-Performance Computing Service Over the Internet for Intraoperative Image Processing"IEEE Transactions on Information Technology in Biomedicine. Vol.8,No.1. 36-46 (2004)
Yasuhiro Kawasaki:“通过互联网进行术中图像处理的高性能计算服务”IEEE 生物医学信息技术汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
伊野文彦: "投影面分割に基づく階層的な画像合成手法を用いた並列ボリュームレンダリング"情報処理学会論文誌. 44-3(掲載予定). 10 (2003)
Fumihiko Ino:“基于投影平面分割的分层图像合成方法的并行体积渲染”日本信息处理学会杂志44-3(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fumihiko Ino: "A High Performance Computing Service over the Internet for Nonrigid Image Registration"Proceedings of Computer Assisted Radiology and Surgery : 17th International Congress and Exhibition (CARS2003). 193-199 (2003)
Fumihiko Ino:“通过互联网实现非刚性图像配准的高性能计算服务”计算机辅助放射学和外科手术记录:第 17 届国际大会和展览 (CARS2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akira Takeuchi: "An Improved Binary-Swap Compositing for Sort-Last Parallel Rendering on Distributed Memory Multiprocessors"Parallel Computing. Vol.29,No.11/12. 1745-1762 (2003)
Akira Takeuchi:“分布式内存多处理器上用于最后排序并行渲染的改进的二进制交换合成”并行计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAGIHARA Kenichi其他文献
HAGIHARA Kenichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAGIHARA Kenichi', 18)}}的其他基金
A study on GPGPU acceleration of simultaneous processing heterogeneous tasks with mutual dependence relation
同时处理具有相互依赖关系的异构任务的GPGPU加速研究
- 批准号:
23300007 - 财政年份:2011
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on parallel programming model for GPGPU
GPGPU并行编程模型研究
- 批准号:
20240002 - 财政年份:2008
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A study on a computational model for GPGPU algorithms and its application to medical image processing
GPGPU算法计算模型及其在医学图像处理中的应用研究
- 批准号:
18300009 - 财政年份:2006
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental studies of a highly parallel programming language compiler forming MPMD type programs
形成MPMD型程序的高度并行编程语言编译器的基础研究
- 批准号:
11680357 - 财政年份:1999
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on separations of paralle programs into physical aspect and logical one and effective compiling techniques
并行程序物理逻辑分离及有效编译技术的研究
- 批准号:
09680336 - 财政年份:1997
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Co-operative Problem Solving Methods in Distributed Network Environment
分布式网络环境下协同问题解决方法研究
- 批准号:
01580030 - 财政年份:1989
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
- 批准号:
24K20795 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
- 批准号:
10723553 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Multitask Image-Natural Language Correspondence Model Development using Large-Scale Medical Image Dataset
使用大规模医学图像数据集开发多任务图像-自然语言对应模型
- 批准号:
23K17229 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Leveraging language understanding to decrease uncertainty measurements in medical image analysis
利用语言理解来减少医学图像分析中的不确定性测量
- 批准号:
2874454 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306573 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
- 批准号:
2306572 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
- 批准号:
2877679 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Artificial Intelligence with Human In The Loop for Automated Medical Image Contouring in Precision Oncology
人工智能与人在环,用于精准肿瘤学中的自动化医学图像轮廓
- 批准号:
2887158 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Data Science and Medical Image Analysis Training for Improved Health Care Delivery in Nigeria - DATICAN
数据科学和医学图像分析培训以改善尼日利亚的医疗保健服务 - DATICAN
- 批准号:
10719097 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别: