Collaborative Research:SCH:Bimodal Interpretable Multi-Instance Medical-Image Classification
合作研究:SCH:双峰可解释多实例医学图像分类
基本信息
- 批准号:2306572
- 负责人:
- 金额:$ 85.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project focuses on creating a smarter artificial-intelligence (AI) system to better understand and analyze complex medical images, such as those from multiple scans of a patient. Traditional methods have had some success but face challenges in dealing with rare diseases and in providing explanations that doctors and patients can easily understand. This project aims to develop a modern AI approach that overcomes these limitations by leveraging a vast collection of medical images and doctors' notes, regardless of the specific health conditions to which they pertain. The research team will tackle various challenges to make the AI system more scalable, interpretable, and robust. This innovative project will deliver trustworthy AI-driven diagnostic tools to medical workers, expediting the diagnostic process for complex medical images. The impact of this project will be felt broadly in AI research and beyond, as its foundational research is likely to have impact in various applications, and its use-inspired research will enable the accelerated transition of modern AI approaches into benefits for society. The approach to achieve the overarching goal is to develop a bimodal interpretable multi-instance medical image classification framework by a scalable pretraining and finetuning approach. The framework consists of bimodal prototype-based interpretable contrastive pretraining to learn paired image and text prototypes from imbalanced unlabeled data, and multi-instance learning by deep area-under-the-receiver-operator-curve (AUC) maximization methods to learn from imbalanced patient-level labeled data. To make contrastive pretraining scalable and robust to imbalanced data, the investigators will develop a unified framework based on partial AUC losses, which not only unifies the existing contrastive loss but also induces new advanced global contrastive losses. The team of researchers will leverage new optimization tools and develop improved stochastic algorithms with mathematical guarantee without dependence on the large batch size of existing methods. To make multi-instance learning scalable and robust to imbalanced data, the investigators propose efficient stochastic algorithms for multi-instance deep AUC maximization by developing stochastic pooling operations from the lens of multi-level compositional optimization. The investigators will not only employ standard performance metrics for evaluation but will also leverage the domain expertise from radiologists to evaluate model performance and interpretability. The investigators will disseminate results through publications, open-source software, tutorials, workshops, and course materials, additionally engaging in outreach initiatives to enhance STEM learning and foster greater interest in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目专注于创建更智能的人工智能(AI)系统,以更好地理解和分析复杂的医学图像,例如来自患者多次扫描的图像。传统方法取得了一些成功,但在处理罕见疾病以及提供医生和患者容易理解的解释方面面临挑战。该项目旨在开发一种现代人工智能方法,通过利用大量的医学图像和医生笔记来克服这些限制,无论它们属于哪种特定的健康状况。研究团队将应对各种挑战,使人工智能系统更具可扩展性、可解释性和健壮性。这一创新项目将为医务人员提供值得信赖的人工智能驱动的诊断工具,加快复杂医学图像的诊断过程。该项目的影响将在人工智能研究和其他领域广泛感受到,因为其基础研究可能会在各种应用中产生影响,其受使用启发的研究将使现代人工智能方法加速转变为对社会的好处。实现这一总体目标的方法是通过可扩展的预训练和精调方法来开发一个双模式可解释的多实例医学图像分类框架。该框架包括:基于双峰原型的可解释对比预训练,用于从不平衡的未标记数据中学习成对的图文原型;多示例学习,通过深度接收器算子曲线下面积最大化(AUC)方法,从不平衡的患者级标记数据中学习。为了使对比预训练具有可伸缩性和对不平衡数据的健壮性,研究人员将开发一个基于部分AUC损失的统一框架,该框架不仅统一了现有的对比损失,而且还引入了新的高级全局对比损失。研究团队将利用新的优化工具,开发具有数学保证的改进随机算法,而不依赖于现有方法的大批量。为了使多实例学习具有可伸缩性和对不平衡数据的健壮性,研究人员从多层次组合优化的角度提出了多实例深度AUC最大化的高效随机算法。研究人员不仅将采用标准的性能指标进行评估,还将利用放射科医生的领域专业知识来评估模型的性能和可解释性。调查人员将通过出版物、开源软件、教程、研讨会和课程材料传播成果,此外还将参与促进STEM学习和培养对该领域更大兴趣的外展倡议。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianbao Yang其他文献
Evolution of the morphological, structural, and molecular properties of gluten protein in dough with different hydration levels during mixing.
- DOI:
10.1016/j.fochx.2022.100448 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:6.1
- 作者:
Ruobing Jia;Mengli Zhang;Tianbao Yang;Meng Ma;Qingjie Sun;Man Li - 通讯作者:
Man Li
Improved bounds for the Nystrm method with application to kernel classification
改进 Nystr 的界限
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
Rong Jin;Tianbao Yang;Mehrdad Mahdavi;Yu-Feng Li;Zhi-Hua Zhou - 通讯作者:
Zhi-Hua Zhou
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
- DOI:
- 发表时间:
2021-11 - 期刊:
- 影响因子:0
- 作者:
Tianbao Yang - 通讯作者:
Tianbao Yang
Optimizing microgreen cultivation through post-crosslinked alginate-gellan gum hydrogel substrates with enhanced porosity and structural integrity
通过具有增强孔隙率和结构完整性的后交联海藻酸钠 - 结冷胶复合水凝胶基质优化微型蔬菜种植
- DOI:
10.1016/j.ijbiomac.2025.142905 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.500
- 作者:
Ella Evensen;Zi Teng;Yimin Mao;Po-Yen Chen;Irma Ortiz;Yang Li;Tianbao Yang;Jorge M. Fonseca;Qin Wang;Yaguang Luo - 通讯作者:
Yaguang Luo
A kernel density based approach for large scale image retrieval
一种基于核密度的大规模图像检索方法
- DOI:
10.1145/1991996.1992024 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Wei Tong;Fengjie Li;Tianbao Yang;Rong Jin;Anil K. Jain - 通讯作者:
Anil K. Jain
Tianbao Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tianbao Yang', 18)}}的其他基金
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2147253 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2246756 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
2246753 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
FAI: Advancing Optimization for Threshold-Agnostic Fair AI Systems
FAI:推进与阈值无关的公平人工智能系统的优化
- 批准号:
2246757 - 财政年份:2022
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
- 批准号:
2110545 - 财政年份:2021
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
CAREER: Advancing Constrained and Non-Convex Learning
职业:推进约束和非凸学习
- 批准号:
1844403 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Continuing Grant
Collaborative Research: Online Data Stream Fusion and Deep Learning for Virtual Meter in Smart Power Distribution Systems
合作研究:智能配电系统中虚拟电表的在线数据流融合和深度学习
- 批准号:
1933212 - 财政年份:2019
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
CRII: III: Scaling up Distance Metric Learning for Large-scale Ultrahigh-dimensional Data
CRII:III:扩大大规模超高维数据的距离度量学习
- 批准号:
1463988 - 财政年份:2015
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
BIGDATA: F: New Algorithms of Online Machine Learning for Big Data
BIGDATA:F:大数据在线机器学习的新算法
- 批准号:
1545995 - 财政年份:2015
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306659 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306740 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2320678 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306738 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306792 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306739 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306709 - 财政年份:2023
- 资助金额:
$ 85.5万 - 项目类别:
Standard Grant