Selective Binding, Generalization/Abstraction, and Internal Model Creation by means of Network Structure Pruning
通过网络结构剪枝的选择性绑定、泛化/抽象和内部模型创建
基本信息
- 批准号:15500139
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For artificial neural networks, pruning is important for reasons of economy, simplification, generalization ability and so on, and a number of algorithms are available today. Pruning occurs in real brains as well, and is thought to be one form of the Principle of Redundancy Reduction that presumably underlies many higher-order brain functions. From this standpoint, we have considered such inter-related subjects as selected binding, integration, abstraction and internal model induction. In particular, we have dealt with the following sub-projects by using a pruning algorithm called CSDF devised earlier by this principal investigator.(1)Analogical Learning/InferenceAnalogy has been studied in various areas including psychology, epistemology, pedagogy, science history, and cognitive science. AI approaches also exist but such rule-based attempts tend to be bruit-force ones and suffer from combinatorial explosion and other problems. Based on CSDF, we have developed a new method called Abstr … More action-Based Connectionist Analogy Processor (AB-CAP). As a result of the learning with the pruning, AB-CAP automatically creates an internal abstraction model as well as induces proper bindings between concrete and abstract entities. For instance, the internal model acts as an attractor of new relevant dataset, to allow AB-CAP to be able to deal with multiple analogies. These features have been demonstrated by a number of examples.(2)Blind Source Separation(BSS)BSS is a new IT innovation by which to extract otherwise unknown signals from their mixtures observed by sensors. The method developed in this study is fundamentally different from existing ones that are all based on information/probability theories. It uses an auto-encoder neural net which minimizes the error associated with the input-output identity mapping with the sensor signals as the input vector. CSDF is applied to the decoder part. The hidden nonlinear units that have survived the CSDF pruning will be the blind signal extractors. Furthermore, the decoder matrix reconstructs the external mixing matrix, so that the decoder part can be interpreted as an internal model of the whole external situation. The method has high adaptability and robustness, as has been shown by many simulation examples including audio and visual real-world data.(3)Application to SOMRecently, this research group has generalized the paradigm of SOM from the vector space to function space. This is called mnSOM. We have been considering incorporation of the CSDF pruning into the competitive learning associated with mnSOM. Successful results remain to be made for this part. Less
对于人工神经网络来说,由于经济、简化、泛化能力等原因,剪枝是很重要的,目前已有很多算法。修剪也发生在真实的大脑中,被认为是冗余减少原理的一种形式,可能是许多高阶大脑功能的基础。从这个角度出发,我们考虑了选择绑定、整合、抽象和内部模型归纳等相互关联的课题。特别地,我们已经处理了下面的子项目,使用一个修剪算法称为CSDF,由该首席研究员早些时候设计。(1)类比学习/推理类比在心理学、认识论、教育学、科学史和认知科学等各个领域都有研究。人工智能方法也存在,但这种基于规则的尝试往往是硬力的,并且会受到组合爆炸和其他问题的影响。基于CSDF,我们开发了一种新的方法,称为abcap (abstract…More action-Based Connectionist Analogy Processor)。通过修剪学习的结果是,AB-CAP自动创建一个内部抽象模型,并在具体实体和抽象实体之间引入适当的绑定。例如,内部模型充当新的相关数据集的吸引器,以允许AB-CAP能够处理多个类比。这些特性已经通过一些例子进行了演示。(2)盲源分离(BSS)盲源分离是一种新的信息技术创新,它可以从传感器观测到的混合信号中提取未知信号。本研究开发的方法与现有的基于信息/概率论的方法有本质的不同。它使用一个自编码器神经网络,以传感器信号作为输入向量,最小化与输入-输出恒等映射相关的误差。将CSDF应用于解码器部分。在CSDF剪枝中幸存下来的隐藏非线性单元将作为盲信号提取器。此外,解码器矩阵重构了外部混合矩阵,使解码器部分可以解释为整个外部情况的内部模型。仿真结果表明,该方法具有较强的适应性和鲁棒性。(3)在SOM中的应用近年来,本课题组将SOM的范式从向量空间推广到函数空间。这叫做mnSOM。我们一直在考虑将CSDF修剪纳入与mnSOM相关的竞争学习中。这一部分还有待取得成功的结果。少
项目成果
期刊论文数量(107)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blind source separation by sensor-signal identity mapping with hidden-unit pruning.
通过传感器信号恒等映射和隐藏单元修剪进行盲源分离。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Minatohara;T.;Nakamura;Y.;Nakabe;T.;Yasui;S.
- 通讯作者:S.
Modular network SOM : Extension of SOM to the realm of function space.
模块化网络SOM:SOM向功能空间领域的扩展。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Tokunaga;K.;Furukawa;T.;Yasui;S.
- 通讯作者:S.
徳永憲洋: "ベクトル空間でなく関数空間における自己組織化マップ"日本神経回路学会第13回全国大会講演論文集. 124-125 (2003)
Norihiro Tokunaga:“函数空间中的自组织映射而不是向量空间”日本神经网络学会第 13 届全国会议记录 124-125 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
中村 洋: "構造刈り込み付き恒等写像ネットを用いた独立信号分離抽出"日本神経回路学会第13回全国大会講演論文集. 160-161 (2003)
Hiroshi Nakamura:“使用具有结构修剪的恒等映射网络进行独立信号分离和提取”日本神经网络协会第 13 届全国会议记录 160-161 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YASUI Syozo其他文献
YASUI Syozo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YASUI Syozo', 18)}}的其他基金
Analogical Learning / Inference / Reasoning: A study based on Neural-Network Ideas and Cognitive Science
类比学习/推理/推理:基于神经网络思想和认知科学的研究
- 批准号:
12680390 - 财政年份:2000
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on synaptic mechanisms in the retinal neural network
视网膜神经网络突触机制的研究
- 批准号:
06044181 - 财政年份:1994
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for international Scientific Research
Exploration of plasticity visual physiologic functions by simultaneous studies on artificial neural networks and vertebrate retina
人工神经网络与脊椎动物视网膜同步研究探索可塑性视觉生理功能
- 批准号:
05452404 - 财政年份:1993
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Synaptic Plasticity of Retinal Neurones
视网膜神经元的突触可塑性
- 批准号:
05044216 - 财政年份:1993
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Overseas Scientific Survey.
Parallel Studies on Artificial Neural Networks and Vertebrate Retinal Neurosystems
人工神经网络和脊椎动物视网膜神经系统的并行研究
- 批准号:
02455017 - 财政年份:1990
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Quantitative study of mutual relationships involving Ca channel, cytosolic Ca concentration, Na-Ca exchange and Na-K ATPase
Ca通道、胞质Ca浓度、Na-Ca交换和Na-K ATP酶相互关系的定量研究
- 批准号:
62490020 - 财政年份:1987
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Development of a method of "Voltage Clamp by light" for the study of visual neurons
开发用于研究视觉神经元的“光电压钳”方法
- 批准号:
61890013 - 财政年份:1986
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Who is most affected by bullying in academic performance? An empirical study using causal inference and machine learning
谁在学业成绩上受到欺凌的影响最大?
- 批准号:
23K01372 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
- 批准号:
10604856 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Knockoff Feature Selection Techniques for Robust Inference in Supervised and Unsupervised Learning
监督和无监督学习中鲁棒推理的仿冒特征选择技术
- 批准号:
2310955 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
High-Dimensional Random Forests Learning, Inference, and Beyond
高维随机森林学习、推理及其他
- 批准号:
2310981 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant